000139928 001__ 139928
000139928 005__ 20240711085620.0
000139928 020__ $$a978-3-89336-904-1
000139928 0247_ $$2Handle$$a2128/5640
000139928 0247_ $$2ISSN$$a1866-1793
000139928 037__ $$aFZJ-2013-05897
000139928 041__ $$aGerman
000139928 1001_ $$0P:(DE-Juel1)141782$$aVieweger, Sebastian Dieter$$b0$$eCorresponding author$$gmale$$ufzj
000139928 245__ $$aEntwicklung und Herstellung von metallgestützten Festelektrolyt-Brennstoffzellen (MSC-SOFC) mit einem Sol-Gel-Elektrolyten$$f - 2013
000139928 260__ $$aJülich$$bForschungszentrum Jülich GmbH, Zentralbibliothek, Verlag$$c2013
000139928 300__ $$a176 S.
000139928 3367_ $$2DataCite$$aOutput Types/Dissertation
000139928 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000139928 3367_ $$2ORCID$$aDISSERTATION
000139928 3367_ $$2BibTeX$$aPHDTHESIS
000139928 3367_ $$02$$2EndNote$$aThesis
000139928 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1598435684_9306
000139928 3367_ $$2DRIVER$$adoctoralThesis
000139928 4900_ $$0PERI:(DE-600)2445288-9$$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v189
000139928 500__ $$3POF3_Assignment on 2016-02-29
000139928 502__ $$aDissertation, Universität Bochum, 2013$$bDissertation$$cUniversität Bochum$$d2013
000139928 520__ $$aFuel Cells are giving the opportunity to convert electric energy from fuels like hydrogen or natural gas with high efficiency. The Forschungszentrum Jülich GmbH and in particular the Institute for Energy and Climate Research, Materials Synthesis and Processing (IEK-1) have been working in the field of fuel cells for the last twenty years. A focus of the recent studies is the expansion of the fuel cell deployability to new market segments from stationary to mobile applications like auxiliary power units. In case of mobile application metal-supported solid oxide fuel cells are promising a high potential in comparison to anode supported ceramic fuel cells. Metal-supported solid oxide fuel cells are showing a higher stability against vibration, mechanical loads and rapid thermal cycling, which are boundary conditions to mobile applications. Metal-supported solid oxide fuel cells put high requirements on methods engineering and materials used during the processing steps such as thermal treatments in reducing atmosphere to protect the substrate and the anode against oxidation. Moreover such cells have also a rougher surface with large defects inside in comparison toanode supported ceramic fuel cells. This makes the deposition of thin layers a challenge and innovative solutions must be found to deal with it. The present work is concerned with the manufacturing of electrolyte layers in the range of a few micrometers on top of a metal-supported cell. The metallic support used in this work, made of a ferritic ODS (oxide dispersion strengthened) Fe-Cr alloy (ITM: Fe-26Cr-(Mo, Ti, Y2O3)), has a low shrinkage below 1 % at 1380 °C in reducing atmosphere, which inhibitsthe densification of the electrolyte. For that reason a sol-gel-electrolyte layer system, which showed first good results with anode supported systems was transferred to the metallic supported system. By modifying the setup of the layer system and the methods engineering, a graded electrolyte in the range of ~ 2 $\mu$m could be reproducibly established on top of the anode layer. The characterized densities of the electrolytes were by a factor of 2-4 times lower compared to the postulated density. Two different kinds of fabrication routes, using a graded screen printed anode layer system and a tape cast anode layer were investigated in order to deposit an anode layer on top of the porous metallic support. It could be shown that on both systems a sol gel electrolyte could be deposited in combination with a screen printed or vacuum slip casted 8YSZ adaptation layer. Further investigations including roughness parameters and a non-destructive measurement method are done and evaluated to characterize the subsurface, on which the electrolyte was deposited. With the non-contact and non-destructive measurement method it is possible to identify and characterize defects like pores and especially the boundaries of the defects in a subsurface. By using analysis-software the detected boundaries and defects could bequantified and analyzed in terms of their geometry and their surface in proportion to the scan surface. The non-destructive characterization method could be transferred and evaluated to different surfaces which are important to the anode supported ceramic fuel cell and metalsupported solid oxide fuel cell technology. The main focus of this work is the coating of thin and gas tight 8YSZ electrolyte layers by sol-gel technology on coarse porous metallic substrates and the developing and evaluating ofa non-destructive method to characterize defects and especially the boundaries of defects in the subsurface, which has to be coated.
000139928 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000139928 650_7 $$0V:(DE-588b)4012494-0$$2GND$$aDissertation$$xDiss.
000139928 8564_ $$uhttps://juser.fz-juelich.de/record/139928/files/FZJ-2013-05897.pdf$$yOpenAccess
000139928 8564_ $$uhttps://juser.fz-juelich.de/record/139928/files/FZJ-2013-05897.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000139928 8564_ $$uhttps://juser.fz-juelich.de/record/139928/files/FZJ-2013-05897.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000139928 8564_ $$uhttps://juser.fz-juelich.de/record/139928/files/FZJ-2013-05897.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000139928 909CO $$ooai:juser.fz-juelich.de:139928$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000139928 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141782$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000139928 9132_ $$0G:(DE-HGF)POF3-139H$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vAddenda$$x0
000139928 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000139928 9141_ $$y2013
000139928 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000139928 920__ $$lyes
000139928 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000139928 9801_ $$aFullTexts
000139928 980__ $$aphd
000139928 980__ $$aVDB
000139928 980__ $$abook
000139928 980__ $$aI:(DE-Juel1)IEK-1-20101013
000139928 980__ $$aUNRESTRICTED
000139928 981__ $$aI:(DE-Juel1)IMD-2-20101013