000139929 001__ 139929
000139929 005__ 20210129212725.0
000139929 020__ $$a978-3-89336-915-7
000139929 0247_ $$2Handle$$a2128/5641
000139929 0247_ $$2ISSN$$a1866-1793
000139929 037__ $$aFZJ-2013-05898
000139929 041__ $$aEnglish
000139929 1001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b0$$eCorresponding author$$gfemale$$ufzj
000139929 245__ $$aFull-waveform inversion of crosshole GPR data for hydrogeological applications$$f2009-10-19 - 2013-02-16
000139929 260__ $$aJülich$$bForschungszentrum Jülich GmbH, Zentralbibliothek, Verlag$$c2013
000139929 300__ $$aX. 164 S.
000139929 3367_ $$2DataCite$$aOutput Types/Dissertation
000139929 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000139929 3367_ $$2ORCID$$aDISSERTATION
000139929 3367_ $$2BibTeX$$aPHDTHESIS
000139929 3367_ $$02$$2EndNote$$aThesis
000139929 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1598514246_7450
000139929 3367_ $$2DRIVER$$adoctoralThesis
000139929 4900_ $$0PERI:(DE-600)2445288-9$$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v193
000139929 500__ $$3POF3_Assignment on 2016-02-29
000139929 502__ $$aDissertation, RWTH Aachen, 2013$$bDissertation$$cRWTH Aachen$$d2013
000139929 520__ $$aHigh resolution and precise characterization of aquifers is needed to improve the understanding of flow and solute transport processes. Decimeter-scale and high contraststructures caused by changes in the porosity or clay content can have a dominant effect on hydraulic processes within an aquifer. Such heterogeneities or layering in aquifers can be related to preferential flow paths or impermeable clay lenses and can act as electromagnetic low-velocity waveguides. Crosshole ground penetrating radar is able to provide shallow subsurface electrical properties, viz. dielectric permittivity and electrical conductivity, and has proven a powerful tool to map and characterize aquifers due to the method’s high resolution and sensitivity to porosity and soil water content. Ray-based methods, which incorporate only a small part of the measured signal in the inversion, such as first-arrival travel times and first-cycle amplitudes, are not able to detect such layers. In contrast, the crosshole GPR full-waveform inversion, which considers the entire waveform or significant parts thereof, is able to resolve sub-wavelength high resolution images and can detect high contrast layers. Recently, a novel 2D time-domain vectorial full-waveform crosshole radar inversion was introduced that significantly improves the model resolution compared to standard ray-based techniques. This GPR full-waveform inversion is modified by allowing an optimized acquisition setup that significantly reduces the acquisition time and computational costs. The improved algorithm is employed to invert crosshole GPR data acquired within a gravel aquifer in the Thur valley, Switzerland, using the ray-based results as starting models. Compared to the ray-based inversion, the results from the full-waveform inversion show images with significantly higher resolution. The simulated traces of the final model, obtained by the full-waveform inversion, fit the observed traces very well in the lower part of the section and reasonably well in the upper part of the section. By incorporating the vadose zone and the water table in the starting models and inversion domain, we are able to improve the initial results and resolve unprecedented sub-wavelength high resolution images for permittivity and conductivity in the entire inversion domain including a high permittivity layer between 5 m - 6 m depth. This high permittivity layer acts as an electromagnetic low-velocity waveguide and is caused by an increased porosity indicating a [...]
000139929 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000139929 650_7 $$0V:(DE-588b)4012494-0$$2GND$$aDissertation$$xDiss.
000139929 8564_ $$uhttps://juser.fz-juelich.de/record/139929/files/FZJ-2013-05898.pdf$$yOpenAccess
000139929 8564_ $$uhttps://juser.fz-juelich.de/record/139929/files/FZJ-2013-05898.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000139929 8564_ $$uhttps://juser.fz-juelich.de/record/139929/files/FZJ-2013-05898.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000139929 8564_ $$uhttps://juser.fz-juelich.de/record/139929/files/FZJ-2013-05898.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000139929 909__ $$ooai:juser.fz-juelich.de:139929$$pVDB
000139929 909__ $$ooai:juser.fz-juelich.de:139929$$pOA
000139929 909CO $$ooai:juser.fz-juelich.de:139929$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000139929 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000139929 9132_ $$0G:(DE-HGF)POF3-259H$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vAddenda$$x0
000139929 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000139929 9141_ $$y2013
000139929 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000139929 920__ $$lyes
000139929 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000139929 980__ $$aphd
000139929 980__ $$aVDB
000139929 980__ $$abook
000139929 980__ $$aI:(DE-Juel1)IBG-3-20101118
000139929 980__ $$aUNRESTRICTED
000139929 9801_ $$aFullTexts