000139937 001__ 139937
000139937 005__ 20210129212726.0
000139937 0247_ $$2doi$$a10.1371/journal.pone.0070095
000139937 0247_ $$2pmid$$apmid:23922916
000139937 0247_ $$2pmc$$apmc:PMC3726526
000139937 0247_ $$2WOS$$aWOS:000323369700132
000139937 0247_ $$2Handle$$a2128/5642
000139937 0247_ $$2altmetric$$aaltmetric:1658843
000139937 037__ $$aFZJ-2013-05904
000139937 041__ $$aeng
000139937 082__ $$a500
000139937 1001_ $$0P:(DE-HGF)0$$aDioletis, Evangelos$$b0
000139937 245__ $$aStructural and functional characterization of the recombinant death domain from death-associated protein kinase.
000139937 260__ $$aLawrence, Kan.$$bPLoS$$c2013
000139937 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s139937
000139937 3367_ $$2DataCite$$aOutput Types/Journal article
000139937 3367_ $$00$$2EndNote$$aJournal Article
000139937 3367_ $$2BibTeX$$aARTICLE
000139937 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139937 3367_ $$2DRIVER$$aarticle
000139937 500__ $$3POF3_Assignment on 2016-02-29
000139937 520__ $$aDeath-associated protein kinase (DAPk) is a calcium/calmodulin-regulated Ser/Thr-protein kinase that functions at an important point of integration for cell death signaling pathways. DAPk has a structurally unique multi-domain architecture, including a C-terminally positioned death domain (DD) that is a positive regulator of DAPk activity. In this study, recombinant DAPk-DD was observed to aggregate readily and could not be prepared in sufficient yield for structural analysis. However, DAPk-DD could be obtained as a soluble protein in the form of a translational fusion protein with the B1 domain of streptococcal protein G. In contrast to other DDs that adopt the canonical six amphipathic α-helices arranged in a compact fold, the DAPk-DD was found to possess surprisingly low regular secondary structure content and an absence of a stable globular fold, as determined by circular dichroism (CD), NMR spectroscopy and a temperature-dependent fluorescence assay. Furthermore, we measured the in vitro interaction between extracellular-regulated kinase-2 (ERK2) and various recombinant DAPk-DD constructs. Despite the low level of structural order, the recombinant DAPk-DD retained the ability to interact with ERK2 in a 1∶1 ratio with a K d in the low micromolar range. Only the full-length DAPk-DD could bind ERK2, indicating that the apparent 'D-motif' located in the putative sixth helix of DAPk-DD is not sufficient for ERK2 recognition. CD analysis revealed that binding of DAPk-DD to ERK2 is not accompanied by a significant change in secondary structure. Taken together our data argue that the DAPk-DD, when expressed in isolation, does not adopt a classical DD fold, yet in this state retains the capacity to interact with at least one of its binding partners. The lack of a stable globular structure for the DAPk-DD may reflect either that its folding would be supported by interactions absent in our experimental set-up, or a limitation in the structural bioinformatics assignment of the three-dimensional structure.
000139937 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0
000139937 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de, PubMed,
000139937 7001_ $$0P:(DE-Juel1)145681$$aDingley, Andrew$$b1$$ufzj
000139937 7001_ $$0P:(DE-HGF)0$$aDriscoll, Paul C$$b2$$eCorresponding author
000139937 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0070095$$gVol. 8, no. 7, p. e70095 -$$n7$$pe70095$$tPLoS one$$v8$$x1932-6203$$y2013
000139937 8564_ $$uhttp://www.plosone.org/article/info:doi/10.1371/journal.pone.0070095
000139937 8564_ $$uhttps://juser.fz-juelich.de/record/139937/files/FZJ-2013-05904.pdf$$yOpenAccess
000139937 8564_ $$uhttps://juser.fz-juelich.de/record/139937/files/FZJ-2013-05904.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000139937 8564_ $$uhttps://juser.fz-juelich.de/record/139937/files/FZJ-2013-05904.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000139937 8564_ $$uhttps://juser.fz-juelich.de/record/139937/files/FZJ-2013-05904.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000139937 909CO $$ooai:juser.fz-juelich.de:139937$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000139937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145681$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000139937 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000139937 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0
000139937 9141_ $$y2013
000139937 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000139937 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000139937 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000139937 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000139937 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000139937 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000139937 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000139937 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000139937 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000139937 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000139937 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000139937 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000139937 920__ $$lyes
000139937 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000139937 9801_ $$aFullTexts
000139937 980__ $$ajournal
000139937 980__ $$aUNRESTRICTED
000139937 980__ $$aFullTexts
000139937 980__ $$aI:(DE-Juel1)ICS-6-20110106
000139937 980__ $$aVDB
000139937 981__ $$aI:(DE-Juel1)IBI-7-20200312