000139940 001__ 139940
000139940 005__ 20210129212727.0
000139940 0247_ $$2doi$$a10.1016/j.bbapap.2012.06.015
000139940 0247_ $$2ISSN$$a1878-1454
000139940 0247_ $$2ISSN$$a1570-9639
000139940 0247_ $$2WOS$$aWOS:000307918300006
000139940 0247_ $$2altmetric$$aaltmetric:822983
000139940 0247_ $$2pmid$$apmid:22771296
000139940 037__ $$aFZJ-2013-05907
000139940 041__ $$aEnglish
000139940 082__ $$a570
000139940 1001_ $$0P:(DE-HGF)0$$aMesarich, Carl H.$$b0
000139940 245__ $$aStructure, dynamics and domain organization of the repeat protein Cin1 from the apple scab fungus
000139940 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2012
000139940 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1385727047_7767
000139940 3367_ $$2DataCite$$aOutput Types/Journal article
000139940 3367_ $$00$$2EndNote$$aJournal Article
000139940 3367_ $$2BibTeX$$aARTICLE
000139940 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139940 3367_ $$2DRIVER$$aarticle
000139940 500__ $$3POF3_Assignment on 2016-02-29
000139940 520__ $$aVenturia inaequalis is a hemi-biotrophic fungus that causes scab disease of apple. A recently-identified gene from this fungus, cin1 (cellophane-induced 1), is up-regulated over 1000-fold in planta and considerably on cellophane membranes, and encodes a cysteine-rich secreted protein of 523 residues with eight imperfect tandem repeats of ~60 amino acids. The Cin1 sequence has no homology to known proteins and appears to be genus-specific; however, Cin1 repeats and other repeat domains may be structurally similar. An NMR-derived structure of the first two repeat domains of Cin1 (Cin1-D1D2) and a low-resolution model of the full-length protein (Cin1-FL) using SAXS data were determined. The structure of Cin1-D1D2 reveals that each domain comprises a core helix-loop-helix (HLH) motif as part of a three-helix bundle, and is stabilized by two intra-domain disulfide bonds. Cin1-D1D2 adopts a unique protein fold as DALI and PDBeFOLD analysis identified no structural homology. A (15)N backbone NMR dynamic analysis of Cin1-D1D2 showed that a short stretch of the inter-domain linker has large amplitude motions that give rise to reciprocal domain-domain mobility. This observation was supported by SAXS data modeling, where the scattering length density envelope remains thick at the domain-domain boundary, indicative of inter-domain dynamics. Cin1-FL SAXS data models a loosely-packed arrangement of domains, rather than the canonical parallel packing of adjacent HLH repeats observed in α-solenoid repeat proteins. Together, these data suggest that the repeat domains of Cin1 display a "beads-on-a-string" organization with inherent inter-domain flexibility that is likely to facilitate interactions with target ligands.
000139940 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0
000139940 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000139940 7001_ $$aSchmitz, Michael$$b1
000139940 7001_ $$aTremouilhac, Pierre$$b2
000139940 7001_ $$aMcGillivray, Duncan J.$$b3
000139940 7001_ $$aTempleton, Matthew D.$$b4
000139940 7001_ $$0P:(DE-Juel1)145681$$aDingley, Andrew$$b5$$eCorresponding author$$ufzj
000139940 773__ $$0PERI:(DE-600)2209540-8$$a10.1016/j.bbapap.2012.06.015$$gVol. 1824, no. 10, p. 1118 - 1128$$n10$$p1118 - 1128$$tBiochimica et biophysica acta / Proteins and proteomics$$v1824$$x1570-9639$$y2012
000139940 8564_ $$uhttp://www.sciencedirect.com/science/article/pii/S1570963912001367#
000139940 8564_ $$uhttps://juser.fz-juelich.de/record/139940/files/FZJ-2013-05907.pdf$$yRestricted
000139940 909CO $$ooai:juser.fz-juelich.de:139940$$pVDB
000139940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145681$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000139940 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000139940 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0
000139940 9141_ $$y2013
000139940 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000139940 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000139940 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000139940 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000139940 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000139940 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000139940 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000139940 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000139940 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000139940 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000139940 920__ $$lyes
000139940 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000139940 980__ $$ajournal
000139940 980__ $$aVDB
000139940 980__ $$aUNRESTRICTED
000139940 980__ $$aI:(DE-Juel1)ICS-6-20110106
000139940 981__ $$aI:(DE-Juel1)IBI-7-20200312