001     139992
005     20210129212736.0
024 7 _ |a 10.1111/j.1365-2389.2012.01446.x
|2 doi
024 7 _ |a 1351-0754
|2 ISSN
024 7 _ |a 1365-2389
|2 ISSN
024 7 _ |2 WOS
|a WOS:000304084100010
037 _ _ |a FZJ-2013-05959
082 _ _ |a 630
100 1 _ |a Borchard, N.
|0 P:(DE-Juel1)145704
|b 0
|u fzj
|e Corresponding author
245 _ _ |a Sorption of copper (II) and sulphate to different biochars before and after composting with farmyard manure
260 _ _ |a Oxford [u.a.]
|c 2012
|b Wiley-Blackwell
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1392372672_27369
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a Biochar application has been suggested for reducing toxic levels of metals in contaminated soils and enhancing nutrient retention in agro-ecosystems. We studied sorption of copper (Cu(II)) and sulphate-sulphur (SO4-S) to charcoal, gasification coke and flash-pyrolysis biochar in order to relate sorption to char properties. Furthermore, we investigated the effect of composting of charcoal and gasification coke on sorptive properties. Langmuir sorption affinity coefficients for Cu(II) for non-composted biochars increased in the order flash-pyrolysis char < charcoal < gasification coke. The sorption capacity for Cu(II) of the chars decreased in the order gasification coke (629 mg kg−1) > flash-pyrolysis char (196 mg kg−1) > charcoal (56 mg kg−1). Composting significantly increased the sorption affinity coefficient approximately by a factor of 5 for charcoal (up to 1.1 l mg−1) and by a factor of 3–4 for gasification coke (up to 3.2 l mg−1). Whereas Cu(II) sorption to gasification coke (composted or not) was largely irreversible, sorption to flash-pyrolysis char and charcoal showed higher reversibility. Relationships between Cu(II) sorption and biochar properties such as cation exchange capacity, specific surface area or aromaticity suggest that sorption was largely determined by complexation with organic matter. Sorption of SO4-S was negligible by non-composted and composted biochars. Composted gasification coke might be suited to reducing toxic Cu(II) concentrations in contaminated soils. Composted charcoal can potentially improve Cu(II) retention in a plant available form in acidic, sandy soils with small organic matter contents. Transient effects of biochars on soil pH can over-ride the influence of sorption to biochars on concentrations of trace elements in soil solution and their availability to plants.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|x 0
|f POF II
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Prost, K.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kautz, T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Moeller, A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Siemens, J.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1111/j.1365-2389.2012.01446.x
|g Vol. 63, no. 3, p. 399 - 409
|p 399 - 409
|n 3
|0 PERI:(DE-600)2020243-X
|t European journal of soil science
|v 63
|y 2012
|x 1351-0754
856 4 _ |z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/139992/files/FZJ-2013-05959_PV.pdf
|z Published final document.
|y Restricted
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:139992
909 C O |o oai:juser.fz-juelich.de:139992
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145704
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-259H
|2 G:(DE-HGF)POF3-200
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21