000139998 001__ 139998
000139998 005__ 20210129212737.0
000139998 0247_ $$2doi$$a10.1074/jbc.M113.532333
000139998 0247_ $$2ISSN$$a1083-351X
000139998 0247_ $$2ISSN$$a0021-9258
000139998 0247_ $$2WOS$$aWOS:000329370900007
000139998 037__ $$aFZJ-2013-05965
000139998 041__ $$aEnglish
000139998 082__ $$a570
000139998 1001_ $$0P:(DE-HGF)0$$aThakur, H. C.$$b0
000139998 245__ $$aThe centrosomal adaptor TACC3 and the microtubule polymerase chTOG interact via defined C-terminal subdomains in an Aurora-A kinase independent manner
000139998 260__ $$aBethesda, Md.$$bSoc.$$c2013
000139998 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1385650879_8527
000139998 3367_ $$2DataCite$$aOutput Types/Journal article
000139998 3367_ $$00$$2EndNote$$aJournal Article
000139998 3367_ $$2BibTeX$$aARTICLE
000139998 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139998 3367_ $$2DRIVER$$aarticle
000139998 500__ $$3POF3_Assignment on 2016-02-29
000139998 520__ $$aThe cancer-associated, centrosomal adaptor protein TACC3 (Transforming Acidic Coiled-Coil 3) and its direct effector, the microtubule polymerase chTOG (colonic and hepatic tumor overexpressed gene), play a crucial function in centrosome-driven mitotic spindle assembly. It is unclear how TACC3 interacts with chTOG. Here, we show that the C-terminal TACC domain of TACC3 and a C-terminal fragment adjacent to the TOG domains of chTOG mediate the interaction between these two proteins. Interestingly, the TACC domain consists of two functionally distinct subdomains, CC1 (aa 414-530) and CC2 (aa 530-630). Whereas CC1 is responsible for the interaction with chTOG, CC2 performs an intradomain interaction with the central repeat region of TACC3, thereby masking the TACC domain prior to effector binding. Contrary to previous findings, our data clearly demonstrate that Aurora-A kinase does not regulate TACC3-chTOG complex formation, indicating that Aurora-A solely functions as a recruitment factor for the TACC3-chTOG complex to centrosomes and proximal mitotic spindles. We identified with CC1 and CC2 two functionally diverse modules within the TACC domain of TACC3 which mediate and modulate, respectively, TACC3 interaction with chTOG required for spindle assembly and microtubule dynamics during mitotic cell division.
000139998 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0
000139998 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000139998 7001_ $$0P:(DE-HGF)0$$aSingh, M.$$b1
000139998 7001_ $$0P:(DE-HGF)0$$aNagel-Steger, L.$$b2
000139998 7001_ $$0P:(DE-HGF)0$$aKremer, J.$$b3
000139998 7001_ $$0P:(DE-HGF)0$$aPrumbaum, D.$$b4
000139998 7001_ $$0P:(DE-HGF)0$$aKalawy Fansa, E.$$b5
000139998 7001_ $$0P:(DE-HGF)0$$aEzzahoini, H.$$b6
000139998 7001_ $$0P:(DE-HGF)0$$aNouri, K.$$b7
000139998 7001_ $$0P:(DE-Juel1)145165$$aGremer, L.$$b8$$ufzj
000139998 7001_ $$0P:(DE-HGF)0$$aAbts, A.$$b9
000139998 7001_ $$0P:(DE-HGF)0$$aSchmitt, L.$$b10
000139998 7001_ $$0P:(DE-HGF)0$$aRaunser, S.$$b11
000139998 7001_ $$0P:(DE-HGF)0$$aAhmadian, M. R.$$b12
000139998 7001_ $$0P:(DE-HGF)0$$aPiekorz, R. P.$$b13$$eCorresponding author
000139998 773__ $$0PERI:(DE-600)1474604-9$$a10.1074/jbc.M113.532333$$gp. M113.532333$$p-$$tThe @journal of biological chemistry$$v-$$x1083-351X
000139998 8564_ $$uhttp://www.jbc.org/content/early/2013/11/22/jbc.M113.532333.abstract
000139998 8564_ $$uhttps://juser.fz-juelich.de/record/139998/files/FZJ-2013-05965.pdf$$yRestricted
000139998 909CO $$ooai:juser.fz-juelich.de:139998$$pVDB
000139998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145165$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000139998 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000139998 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0
000139998 9141_ $$y2013
000139998 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000139998 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000139998 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000139998 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000139998 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000139998 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000139998 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000139998 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000139998 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000139998 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000139998 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000139998 920__ $$lyes
000139998 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000139998 980__ $$ajournal
000139998 980__ $$aVDB
000139998 980__ $$aUNRESTRICTED
000139998 980__ $$aI:(DE-Juel1)ICS-6-20110106
000139998 981__ $$aI:(DE-Juel1)IBI-7-20200312