000139999 001__ 139999
000139999 005__ 20210129212737.0
000139999 0247_ $$2doi$$a10.1515/hsz-2013-0184
000139999 0247_ $$2ISSN$$a1431-6730
000139999 0247_ $$2ISSN$$a1437-4315
000139999 0247_ $$2WOS$$aWOS:000325717100006
000139999 0247_ $$2Handle$$a2128/18373
000139999 037__ $$aFZJ-2013-05966
000139999 041__ $$aEnglish
000139999 082__ $$a540
000139999 1001_ $$0P:(DE-HGF)0$$aThakur, Harish C.$$b0
000139999 245__ $$aRole of centrosomal adaptor proteins of the TACC family in the regulation of microtubule dynamics during mitotic cell division
000139999 260__ $$aBerlin [u.a.]$$bde Gruyter$$c2013
000139999 3367_ $$2DRIVER$$aarticle
000139999 3367_ $$2DataCite$$aOutput Types/Journal article
000139999 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1385650950_8169
000139999 3367_ $$2BibTeX$$aARTICLE
000139999 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139999 3367_ $$00$$2EndNote$$aJournal Article
000139999 500__ $$3POF3_Assignment on 2016-02-29
000139999 520__ $$aDuring the mitotic division cycle, cells pass through an extensive microtubule rearrangement process where microtubules forming the mitotic spindle apparatus are dynamically instable. Several centrosomal- and microtubule-associated proteins are involved in the regulation of microtubule dynamics and stability during mitosis. Here, we focus on members of the transforming acidic coiled coil (TACC) family of centrosomal adaptor proteins, in particular TACC3, in which their subcellular localization at the mitotic spindle apparatus is controlled by Aurora-A kinase-mediated phosphorylation. At the effector level, several TACC-binding partners have been identified and characterized in greater detail, in particular, the microtubule polymerase XMAP215/ch-TOG/CKAP5 and clathrin heavy chain (CHC). We summarize the recent progress in the molecular understanding of these TACC3 protein complexes, which are crucial for proper mitotic spindle assembly and dynamics to prevent faulty cell division and aneuploidy. In this regard, the (patho)biological role of TACC3 in development and cancer will be discussed.
000139999 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0
000139999 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000139999 7001_ $$0P:(DE-HGF)0$$aSingh, Madhurendra$$b1
000139999 7001_ $$0P:(DE-HGF)0$$aNagel-Steger, Luitgard$$b2
000139999 7001_ $$0P:(DE-HGF)0$$aPrumbaum, Daniel$$b3
000139999 7001_ $$0P:(DE-HGF)0$$aFansa, Eyad Kalawy$$b4
000139999 7001_ $$0P:(DE-Juel1)145165$$aGremer, Lothar$$b5$$ufzj
000139999 7001_ $$0P:(DE-HGF)0$$aEzzahoini, Hakima$$b6
000139999 7001_ $$0P:(DE-HGF)0$$aAbts, André$$b7
000139999 7001_ $$0P:(DE-HGF)0$$aSchmitt, Lutz$$b8
000139999 7001_ $$0P:(DE-HGF)0$$aRaunser, Stefan$$b9
000139999 7001_ $$0P:(DE-HGF)0$$aAhmadian, Mohammad R.$$b10
000139999 7001_ $$0P:(DE-HGF)0$$aPiekorz, Roland P.$$b11$$eCorresponding author
000139999 773__ $$0PERI:(DE-600)1466062-3$$a10.1515/hsz-2013-0184$$gVol. 394, no. 11$$n11$$p1411-1423$$tBiological chemistry$$v394$$x1437-4315$$y2013
000139999 8564_ $$uhttp://www.degruyter.com/view/j/bchm.2013.394.issue-11/hsz-2013-0184/hsz-2013-0184.xml
000139999 8564_ $$uhttps://juser.fz-juelich.de/record/139999/files/FZJ-2013-05966.pdf$$yOpenAccess
000139999 909CO $$ooai:juser.fz-juelich.de:139999$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000139999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145165$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000139999 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000139999 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0
000139999 9141_ $$y2013
000139999 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000139999 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000139999 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000139999 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000139999 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000139999 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000139999 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000139999 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000139999 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz
000139999 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000139999 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000139999 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000139999 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000139999 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000139999 920__ $$lyes
000139999 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000139999 9801_ $$aFullTexts
000139999 980__ $$ajournal
000139999 980__ $$aVDB
000139999 980__ $$aUNRESTRICTED
000139999 980__ $$aI:(DE-Juel1)ICS-6-20110106
000139999 981__ $$aI:(DE-Juel1)IBI-7-20200312