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Abstract: During the mitotic division cycle, cells pass 
through an extensive microtubule rearrangement process 
where microtubules forming the mitotic spindle appara-
tus are dynamically instable. Several centrosomal- and 
microtubule-associated proteins are involved in the regu-
lation of microtubule dynamics and stability during mito-
sis. Here, we focus on members of the transforming acidic 
coiled coil (TACC) family of centrosomal adaptor proteins, 
in particular TACC3, in which their subcellular localization 
at the mitotic spindle apparatus is controlled by Aurora-A 
kinase-mediated phosphorylation. At the effector level, 
several TACC-binding partners have been identified and 
characterized in greater detail, in particular, the microtu-
bule polymerase XMAP215/ch-TOG/CKAP5 and clathrin 
heavy chain (CHC). We summarize the recent progress 
in the molecular understanding of these TACC3 protein 
complexes, which are crucial for proper mitotic spindle 
assembly and dynamics to prevent faulty cell division and 
aneuploidy. In this regard, the (patho)biological role of 
TACC3 in development and cancer will be discussed.
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Introduction
Mitosis, the shortest phase within the cell cycle, is a 
fundamental cell division process that is essential for 
embryonic development and postnatal proliferative 
tissue homeostasis and function. Normal mitosis ensures 
an equal distribution of the genetic material duplicated 
during S-phase into two identical daughter cells (karyo
kinesis), which become finally separated during cytoki-
nesis. Mitosis is a very complex and tightly controlled 
process where several biomolecules including numerous 
proteins and protein complexes are involved as impor-
tant structural, functional, and regulatory elements. The 
mitotic spindle apparatus is comprised of centrosomes/
spindle poles, spindle microtubules, and microtubule-
associated protein complexes (Bornens, 2002, 2012); 
which are also involved in kinetochore protein interac-
tions at the centromeric region of chromosomes. More 
than 200 proteins are responsible for spindle pole 
formation, chromosome alignment and segregation, 
cytokinesis during the cell division process (Andersen 
et  al., 2003; Hubner et  al., 2010; Hutchins et  al., 2010; 
Neumann et  al., 2010) (http://www.mitocheck.org/), 
as well as spindle checkpoint function that monitors 
correct microtubule-kinetochore attachment, thereby 
controlling metaphase to anaphase transition (Rieder 
and Maiato, 2004; Rieder, 2011; Khodjakov and Rieder, 
2009; Musacchio, 2011; DeLuca and Musacchio, 2012).

Centrosomes are characteristic features of all meta-
zoans functioning as microtubule organizing centers 
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(MTOC) at spindle poles (Bornens, 2002, 2012; Azimza-
deh and Bornens, 2005). Centrosomes are comprised of 
a perpendicularly aligned pair of centrioles surrounded 
by pericentriolar matrix (PCM) components. Microtu-
bules as cytoskeletal elements of the spindle apparatus 
are hollow cylindrical structures, which are involved in 
the formation of cilia, flagella, axonemes, and spindle 
fibers (Nigg and Raff, 2009). In dividing cells, arrays of 
aster microtubules originate from MTOCs and connect 
them to the chromosomes at the metaphase plate 
(Compton, 2000). During the G2-/M-phase of the cell 
cycle, cells pass through a huge microtubule arrange-
ment process that functions as an important regulatory 
switch and consists of microtubule nucleation, elonga-
tion, polymerization, and depolymerization (Mitchison 
and Kirschner, 1984; Desai and Mitchison, 1997). Aster 
microtubules are, in particular, highly dynamic struc-
tures, which are elongated by continuous addition of 
GTP bound αβ-tubulin heterodimers to the growing 
plus ends, where their depolymerization is triggered by 
hydrolysis of bound GTP to GDP and Pi (Mitchison and 
Kirschner, 1984). Microtubules are dynamically unsta-
ble at their plus ends, which is characterized by two dif-
ferent transitions, called catastrophe (transition from 
polymerization to shrinkage) and rescue (transition 
from depolymerization to growth) (Figure 1) (Mitchison 
and Kirschner, 1984; Gardner et  al., 2013). Therefore, 
microtubule length and stability depend on the shift of 
the equilibrium between these two transition states that 
is primarily regulated by several microtubule-associated 
proteins (MAPs).

Among the MAPs, the centrosomal transforming 
acidic coiled coil (TACC) protein family comprises impor-
tant components of the mitotic spindle apparatus (Gergely 
et al., 2000a; Gergely, 2002; Raff, 2002; Peset and Vernos, 
2008; Ha et  al., 2013a). Vertebrates express three TACC 
isoforms, TACC1, TACC2, and TACC3 (Still et  al., 1999a, 
2004; Gomez-Baldo et  al., 2010). As discussed below in 
greater detail, TACCs are regulated by mitotic kinases, 
in particular, Aurora-A, and function at the mitotic 
spindle apparatus as adaptor proteins, thereby, interact-
ing, among others, with microtubule polymerases of the 
evolutionary conserved Xenopus microtubule-associated 
protein 215 kDa (XMAP215)/minispindles (Msps)/colonic 
and hepatic tumor overexpressed gene (chTOG)/cytoskel-
eton-associated protein 5 (CKAP5) family. This effector 
complex plays a key role in the regulation of centrosome-
dependent assembly of spindle microtubules as well as 
their dynamics and stability during mitosis (Conte et al., 
2003; Gergely et  al., 2003; Peset et  al., 2005; Peset and 
Vernos, 2008).

Catastrophe Rescue

+–

αβ-tubulin heterodimer

γ-tubulin ring complex

Figure 1 Microtubule dynamics during mitosis.
The γ-tubulin ring complex primes microtubule nucleation 
and polymerization. Further elongation of microtubules is 
dependent on the shift in equilibrium between two transition 
states, catastrophe (polymerization→shrinkage) and rescue 
(depolymerization→growth). Several MAPs regulate thereby the 
shift between these two transitions. Microtubule minus (-) and plus 
ends (+) are indicated.

Evolution of TACC adaptor proteins –  
conserved mitotic role and  
implications for nonmitotic 
functions
TACC1 was the first human TACC protein family member 
that was identified and mapped close to the fibroblast 
growth factor receptor 1 (FGFR1) region at chromosome 
8p11 (Still et al., 1999b). Similarly, TACC2 and TACC3 were 
identified and mapped to be physically linked to the cor-
responding FGFR2 and FGFR3 chromosomal regions 
10q26 and 4p16, respectively (Still et  al., 1999a, 2004). 
During evolution, two gene duplication processes gave 
rise to three distinct TACC/FGFR gene pairs (Still et  al., 
2004). Thus, three TACC isoforms have evolved in all 
vertebrates analyzed so far, except Xenopus sp., where 
only two isoforms, TACC3/Maskin (Xenopus laevis) and 
TACC2 (Xenopus tropicalis), have been reported (Klein 
et  al., 2002; Still et  al., 2004; O’Brien et  al., 2005; Peset 
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et  al., 2005). In contrast, in organisms other than meta-
zoans, only one single TACC isoform has been identified 
and characterized, i.e., Spc72 (Saccaromyces cerevisiae), 
Alp7 (Schizosaccaromyces pombe), TACC (Dictyostelium 
discoideum), TAC1 (Caenohabditis elegans), and DTACC 
(Drosophila melanogaster) (Chen et  al., 1998; Gergely 
et al., 2000b; Sato et al., 2003, 2004; Srayko et al., 2003; 
Peset and Vernos, 2008; Samereier et  al., 2011). TACC 
proteins are characterized by their highly conserved 
C-terminal coiled coil signature domain (TACC domain; 
Figure 2) (Gergely et al., 2000a; Still et al., 2004; Peset and 
Vernos, 2008; Gomez-Baldo et al., 2010; Ha et al., 2013b). 
However, looking at the evolutionary tree of coiled coil 
structure-containing proteins, the TACC family members 
form a subfamily, which is different from other typical 
coiled coil-rich proteins, like keratins, tropomyosins, and 
kinesins (Still et al., 2004; Gomez-Baldo et al., 2010).

The function of TACC orthologs in centrosomally con-
trolled mitotic spindle assembly and dynamics remained 
conserved throughout evolution (Gergely, 2002; Still et al., 
2004; Peset and Vernos, 2008). Interestingly, in addi-
tion to this conserved role, TACC family members of dif-
ferent species have obviously gained additional, mostly 
nuclear, functions during evolution (Still et  al., 2004; 
Peset and Vernos, 2008), which are far less understood. 
For example, interaction of the zink finger protein friend 
of GATA1 (FOG1) or aryl hydrocarbon receptor nuclear 
translocator (ARNT) with murine TACC3 implicates a 
function of TACC3 as transcriptional coactivator (Table 1) 
(Sadek et al., 2000; Garriga-Canut and Orkin, 2004; Partch 
et al., 2011). In this line, murine TACC3 has been originally 

identified in a yeast two-hybrid screen for signal trans-
ducer and activator of transcription 5 (Stat5)-binding 
proteins; however, subsequent in-depth structural and 
functional interaction analysis in cell culture failed to 
confirm this interaction (Piekorz et  al., 2002). Moreover, 
binding of the small nuclear ribonucleoproteins small 
nuclear ribonucleoprotein polypeptide G (SmG) and U6 
snRNA-associated Sm-like protein LSm7 (LSM7) to TACC1 
suggested a putative role of TACC1 in mRNA processing 
and homeostasis (Conte et al., 2002, 2003). A complex of 
TACC3 with tuberous sclerosis 2 (TSC2) has been impli-
cated in the control of cytokinesis and maintenance of 
the nuclear envelope structure (Gomez-Baldo et al., 2010). 
Lastly, interactions of the different TACC family members 
with chromatin modifiers and transcriptional regulators, 
including glioma-amplified sequence 41 (GAS41), the 
nuclear receptors thyroid hormone receptor (TR) and retin-
oid acid receptor (RAR), the SWI/SNF chromatin remod-
eling complex, the translation initiation factor elF4E, and 
the histone acetyltransferase pCAF corroborate the puta-
tive and diverse functional portfolio that TACC proteins 
gained during evolution (overview in Table 1) (Still et al., 
2004). Nevertheless, in vivo, the majority of these nonmi-
totic (mostly nuclear) functions of TACC proteins need to 
be critically subjected to an in-depth structure-function 
analysis in vivo, in particular, considering (i) that several 
TACC-binding partners have been originally identified by 
employing yeast two-hybrid screening using or fishing 
out the (rather sticky) TACC domain, and (ii) taking into 
account that TACC isoforms show rather defined expres-
sion profiles in vivo (cell type; proliferation status, i.e., 

Sc Spc72

Sp Alp7

Ce TAC1

Dm TACC

Tr TACC3

TACC domain

N-terminal conserved region

SPAZ motif

SPD repeat

XI TACC3

Mm TACC3

Hs TACC1

Hs TACC2

Hs TACC3

Figure 2 Domain organization of TACC protein family members.
Characteristic domains are indicated, including the highly conserved C-terminal TACC domain that is coiled coil-rich and present in all TACC 
proteins (green), the conserved first 100 amino acid residues at the N-terminus of TACC3 isoforms of higher eukaryotes (blue), random coil 
unstructured regions (gray), SPAZ motifs (dark gray), and the SPD-rich repeat region (blue). Species: Sc, Saccharomyces cereviceae; Sp, S. 
pombe; Tr, Takifugu rubripes; Xl, X. laevis; Hs, H. sapiens; Ms, M. musculus; Dm, D. melanogaster; Ce, C. elegans. Taken from Thakur (2012) 
and adapted after Peset and Vernos (2008).
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Figure 3 Insight into the TACC3 interactome.
Depicted are proteins known or proposed to interact with different domains of murine (upper part) and human (lower part) TACC3. The 
majority of the partner proteins depicted bind to the C-terminal coiled coil domain (TACC domain; green) of TACC3. As summarized in Table 
1, besides chTOG, interaction of TACC3 with several other proteins, which are involved in different cellular processes, has been described. 
The binding region(s) between DOCK7 (dedicator of cytokinesis 7) or TSC2 and TACC3 are currently unclear. The three conserved Aurora-A 
phosphorylation sites present in vertebrate TACC3 isoforms are indicated. MT, microtubules; HAT, histone acetyltransferase. Taken from 
Thakur (2012).

cycling vs. postmitotic), which do not always support the 
TACC-binding partner interactions observed under in vitro 
conditions.

Insight into structural organization 
of TACC adaptor proteins
All the TACC protein family members are characterized by 
their highly conserved C-terminal TACC signature domain 
comprised of approximately 200 amino acids, whereas the 
N-terminus is rather variable in both sequence homology 
and length (Figure 2) (Gergely, 2002; Peset and Vernos, 
2008; Ha et  al., 2013a). TAC1, the TACC homolog in C. 
elegans, is the smallest member and consists only of the 
TACC domain without a variable N-terminus (Srayko et al., 
2003). Spc72 from S. cerevisiae displays three separated 
coiled coil regions, one each at the N- and C-terminus, 
and the third in the central part (Chen et al., 1998). Alp7, 
the TACC homolog in S. pombe, shows a smaller N-ter-
minal variable region (Sato et  al., 2004). All the other 
TACC family members contain longer N-terminal variable 

regions adjacent to the TACC signature domain (Gergely, 
2002; Peset and Vernos, 2008). As is obvious from the 
TACC3 interactome discussed below (Figure 3), the TACC 
domain is involved in the interaction with several known 
binding proteins, in particular, the microtubule polymer-
ase chTOG/CKAP5.

The longer variable N-terminus of DTACC and also, 
in particular, of the vertebrate TACC3 isoforms con-
tains binding sites for the mitotic serine-threonine 
kinase Aurora-A that phosphorylates three conserved 
serine residues (S863 in D-TACC; S33, S620, and S626 in  
X. laevis TACC3/Maskin; S34, S552, and S558 in Homo 
sapiens TACC3; and, putatively, S34, S341 and S347 in 
Mus musculus TACC3) (Giet et  al., 2002; Barros et  al., 
2005; Kinoshita et  al., 2005; Peset et  al., 2005; LeRoy 
et al., 2007). As a consequence, Aurora-A phosphoryla-
tion of one particular serine (i.e., pS558 in human TACC3 
and pS626 in TACC3/Maskin) determines the recruit-
ment and differential subcellular localization of DTACC 
and TACC3 to centrosomes (pDTACC, pTACC3) compared 
to the localization along spindle microtubules toward 
their plus ends (DTACC, TACC3). Furthermore, the 
longer N-terminus of the TACC family members contains 
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also a serine-proline (SP)-rich repeat region, named 
serine, prolin, and aspartate/glutamate (SPD/E)-rich 
repeats, and the so-called serine-prolin-Azu-1 (SPAZ) 
motifs (Figure 2) (Peset and Vernos, 2008). In murine 
TACC3, this region is characterized by the presence of 
seven perfect repeats of 24 amino acids each (Still et al., 
2004). Interestingly, each repeat contains one PXXP 
motif, which represents a bona fide docking site for 
src homology 3 (SH3) domain-containing proteins (Kay 
et al., 2000). The role of protein-protein interaction via 
SH3 domains has been demonstrated in several proteins 
involved in cellular signal transduction. However, a 
putative function of the central repeat motifs present in 
TACC3 isoforms in protein-protein interaction remains 
to be established. Irrespective of this, the N-termini of 
several TACC family members mediate the association 
with several proteins, including LSM7 and SmG (TACC1), 
eIF-4E and importin-β (Maskin), Gas41 (TACC1 and 2), 
and TRAP (TACC1), which are all linked to rather diverse 
cellular processes as summarized in Table 1.

Centrosomes and the PCM are highly enriched with 
coiled coil-containing proteins (Andersen et  al., 2003). 
Coiled coil motifs or domains are mainly dimeric to hep-
tameric with a parallel or antiparallel orientation of the 
helices (Mikolajka et al., 2006). To analyze the oligomeric 
status and structural orientation of the conserved TACC 
domain, we purified murine TACC3 after bacterial overex-
pression and subjected it to biophysical characterization. 
Employing multi-angle light scattering (MALS) and ana-
lytical ultracentrifugation-sedimentation velocity (AUC-
SV) measurements, we observed that TACC3 displays a 
polydisperse, dimeric to oligomeric structure and a highly 
extended shape (Thakur, 2012). Moreover, negative stain-
ing and electron microscopy confirmed an elongated 
fiber-like structure of purified TACC3 with variable lengths 
(Figure 4). These findings are consistent with overexpres-
sion studies in eukaryotic cells where TACC proteins or the 
coiled coil-rich TACC domain per se formed highly ordered 
polymers with the capability to interact with microtubules 
(Gergely et al., 2000b).
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Figure 4 Electron microscopic analysis depicting an elongated structure and fiber-like appearance of highly purified murine TACC3 (A).
Bar size in the left panel: 100 nm. Enlarged single TACC3 fibers are shown in the right panels (bar: 10 nm). (B) Quantitative analysis of fiber-
like TACC3 molecules reveals average length and width variations of mostly 25–100 nm and 5–10 nm, respectively. For electron microscopic 
imaging, a Joel JEM-1400 electron microscope equipped with a LaB6 filament was used and operated at an acceleration voltage of 120 kV. 
Digital micrographs were taken at a corrected magnification of 53.800 ×  and a defocus value of -1.5 μm using a 4k × 4k CMOS camera F416 
(TVIPS) at low-dose conditions. Taken from Thakur (2012).
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TACC3 – interactome analysis and 
role in mitotic spindle function

Insight into TACC3 function in microtubule dynamics and 
cell division has been recently elaborated by global inter-
actome studies (Hubner et al., 2010; Hutchins et al., 2010; 
Neumann et al., 2010). One major effector protein binding 
to TACC3 via its TACC domain (Figure 3) represents the 
microtubule polymerase XMAP215/chTOG (Brouhard 
et  al., 2008; Widlund et  al., 2011) that colocalizes with 
TACC3 at the mitotic spindle apparatus (Figure 5A). The 
interaction of the TACC family members with the respec-
tive XMAP215 family member is evolutionary conserved 
and required for spindle pole organization and, in particu-
lar, microtubule dynamics during cell division (Bellanger 
and Gonczy, 2003; Gergely et al., 2003; Sato et al., 2004; 
Peset and Vernos, 2008). Deletion mapping of XMAP215 
in X. laevis suggested that the N-terminal part exhibits 
microtubule-stabilizing activity that stimulates microtu-
bule growth at the plus ends (Popov et al., 2001; Kinoshita 
et  al., 2002). In particular, the N-terminus of XMAP215/
chTOG proteins contains five evolutionary conserved 
TOG domains, which bind α,β-tubulin heterodimers 
and, thereby, help to polymerize microtubules (Brouhard 

et al., 2008; Al-Bassam and Chang, 2011). Conversely, in 
oocyte extracts from X. laevis, it was demonstrated that 
the C-terminal part of XMAP215 was able to suppress the 
growth of microtubules by promoting microtubule catas-
trophes (Popov et  al., 2001). Formation of the TACC3/
Maskin-XMAP215/chTOG complex appears to antagonize 
the microtubule depolymerase activity of the kinesin-like 
protein XKCM1/MCAK at the plus poles (Kinoshita et al., 
2005) and, independent from XKCM1/MCAK function, to 
stimulate assembly of microtubules at centrosomes (Barr 
and Gergely, 2008). Taken these findings into account, 
it seems that TACC3/Maskin functions as an adaptor 
protein (Hood and Royle, 2011), where binding of the 
TACC domain to XMAP215/chTOG ‘engages’ the C-terminal 
part of XMAP215/chTOG and, thereby, inhibits its micro-
tubule catastrophe-promoting activity. Therefore, during 
mitotic cell division, the TACC3/Maskin-XMAP215/chTOG 
protein complex likely causes a shift of the dynamic equi-
librium toward the microtubule rescue status (Figure 1). 
Upon metaphase-anaphase transition and mitotic exit, 
the TACC3 levels strongly decline by Cdh1-dependent 
ubiquitination and proteasomal degradation (Jeng et al., 
2009a). As a consequence, a gradual increase in depoly
merization activity by the ‘TACC-free’ C-terminal domain of 
XMAP215/chTOG may then lead to a dynamic equilibrium 

Figure 5 Subcellular colocalization of TACC3 with chTOG and CHC (clathrin heavy chain) in mitotic Hela cells. Images of metaphases were 
collected under a Zeiss cLSM510-Meta microscope at a 63 ×  magnification.
(A) At centrosomes and the spindle apparatus, TACC3 colocalizes with chTOG and microtubules. (B) CHC colocalizes with TACC3 at  
centrosomes and a diffused region around the spindle poles. DAPI was used to detect DNA. Taken from Thakur (2012).
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Figure 6 Schematic model summarizing the role of TACC3 in the regulation of microtubule dynamics at the mitotic spindle apparatus.
TACC3 in a complex with chTOG localizes at the centrosome and along spindle microtubules in an Aurora-A kinase-regulated manner. The 
TACC3 (pS558)-chTOG complex interacts with the clathrin triskelion, thereby, mediating microtubule growth kinetics and stability both at 
the longitudinal level and by providing microtubule cross linking (Booth et al., 2011; Royle, 2012). Interestingly, the RanGTP and Aurora-A 
regulated and K-fiber-localized HURP may recruit protein phosphatase 1 (PP1) to the mitotic spindle apparatus. It is, therefore, tempting to 
speculate that TACC3 (pS558) undergoes dephosphorylation by the HURP-controlled PP1 complex prior to localization toward the microtu-
bule plus poles as suggested for DTACC (Tan et al., 2008). Model adapted and taken from Thakur (2012).

shift toward the microtubule catastrophe status. Of note, 
this proposed mechanism may be evolutionary conserved 
given the very high sequence identity of the C-termini 
of mammalian chTOG proteins when, e.g., compared to 
the C-terminus of XMAP215 from X. laevis (Thakur, 2012). 
Moreover, the ‘KKIGSK’ sequence and phosphorylation 
motif present in the C-terminus of XMAP215, which plays 
a role in (possibly TACC3/Maskin-dependent) centro-
somal targeting of XMAP215 (Popov et  al., 2001), is also 
completely conserved in mammalian chTOG proteins. 
Taken together, although an in-depth structural TACC3-
chTOG interaction mapping has not been described yet, a 
model can be envisioned where TACC3/Maskin regulates 
spindle microtubule dynamics during mitotic progression 
through the control of the spatiotemporal localization of 
XMAP215/chTOG and its microtubule (de)polymerizing 
activity (Figure 6).

Interestingly, clathrin heavy chain (CHC), which has 
been recently identified as the interacting partner for the 

TACC3-chTOG protein complex (Fu et  al., 2010; Hubner 
et al., 2010; Lin et al., 2010; Booth et al., 2011), plays an 
essential role in the organization of the mitotic spindle 
where CHC perfectly colocalizes with TACC3 (Figure 5B). 
Binding of CHC to TACC3/Maskin occurs, in contrast to 
chTOG, outside of the TACC domain and requires Aurora-
A-mediated phosphorylation at serine residues 620 and 
626 (Maskin) or 558 (human TACC3; Figure 3) (Fu et  al., 
2010; Lin et  al., 2010). In the following clathrin heavy 
chain 17 (CHC17), but not the related isoform CHC22, 
was shown to control spindle pole integrity during early 
mitosis by stabilizing centrosomal chTOG (Foraker et al., 
2012). Moreover, elegant work by Booth et  al. demon-
strated that the TACC3-chTOG-CHC protein complex is 
crucial for the stabilization of intermicrotubule bridges 
and kinetochore fibers, the latter mediating chromosomal 
movement during mitosis (Booth et al., 2011). Rapid inac-
tivation of the TACC3-chTOG-clathrin axis at defined 
mitotic stages proved that clathrin, which is recruited to 
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microtubules by phosphorylated TACC3 (Fu et  al., 2011; 
Royle, 2012), is essential for both spindle assembly and 
subsequent spindle function (Cheeseman et al., 2013). In 
summary, TACC3 functions as an adaptor protein and a 
recruitment factor for both chTOG and clathrin to ensure 
proper mitotic spindle dynamics and function.

TACC3 – expression pattern and 
biological role
Mammalian TACC isoforms display differences in the 
temporal and spatial expression profile as well as in the 
subcellular localization pattern (Gergely et  al., 2000a; 
Piekorz et  al., 2002; Schuendeln et  al., 2004). Human 
TACC3 was initially identified as gene overexpressed in 
multiple myeloma (Still et al., 1999a; Eslinger et al., 2010) 
and various other cancer cell lines and tumor cell types 
(Ha et al., 2013b). TACC3 is expressed at high levels during 
embryogenesis and postnatally in proliferating and regen-
erative cell types, including the hematopoietic system, 
reproductive organs, and epithelial cells (Hao et al., 2002; 
Piekorz et al., 2002; Schuendeln et al., 2004). In contrast, 
TACC2 is found predominantly in postmitotic tissues like 
the brain and heart (Schuendeln et  al., 2004), whereas 
TACC1 shows a more ubiquitous expression pattern  
in vivo (Lauffart et  al., 2006). During cell cycle progres-
sion, TACC3 mRNA and protein levels increase dramati-
cally in the late S- and G2-/M-phase (Piekorz et al., 2002), 
followed by Cdh1-regulated proteasomal degradation of 
TACC3 during mitotic exit (Jeng et al., 2009b).

Studies employing mouse knockout models revealed 
a vital role of TACC3 during embryonic development. Gene 
deficiency for TACC3 results in embryonic lethality asso-
ciated with aneuploidy, activation of the mitotic spindle 
assembly, and postmitotic p53-p21WAF checkpoints, apopto-
sis, impaired proliferation, and overall strong growth retar-
dation (Piekorz et al., 2002; Yao et al., 2007). At this, TACC3 
plays, e.g., an essential role in hematopoietic stem cell 
function or mesenchymal cell expansion that is required 
for proper formation of the axial skeleton (Yao et al., 2007). 
Comparable effects, including an induction of growth 
arrest (by triggering the cellular senescence program) 
or apoptosis, both dependent on the p53/G1 checkpoint 
status, have been observed when TACC3 was depleted by 
RNA interference in various cell culture models (Schmidt 
et al., 2010a,b; Schneider et al., 2007, 2008). In contrast, 
TACC2 is dispensable for normal development, and TACC2 
gene deficiency did not cause any detectable mitotic or 
proliferative defects (Schuendeln et al., 2004). Moreover, 

double deficiency for TACC2 and TACC3 did not aggravate 
the phenotype of TACC3-deficient embryos. As a TACC1 
deficiency has not been described yet, possible redundant 
roles between TACC1 and TACC2 cannot be assessed. Taken 
together, the reason(s) why mammalians evolved three 
TACC isoforms with possibly specific roles as well as the 
degree of functional redundancy between these isoforms 
remain(s) unclear.

The emerging pathobiological role 
of TACC proteins in human cancer
TACC genes have been originally discovered in genomic 
regions that are amplified in breast tumors and multi-
ple myeloma (Still et al., 1999b). Mutations or an altered 
expression of TACC1 and TACC3 have been subsequently 
linked to the etiology of breast, ovarian, bladder, non-
small-cell lung cancer, prostate, and melanoma tumors 
(Cully et al., 2005; Lauffart et al., 2005; Jung et al., 2006; 
Kiemeney et al., 2010; Hodis et al., 2012; Ha et al., 2013a). 
A role in the androgen-mediated growth of prostate cancer 
has been suggested for TACC2 (Takayama et  al., 2012). 
Moreover, the TACC3 gene is amplified in glioma tumors 
at the genomic level. These tumors show a grade-specific 
upregulation of TACC3 expression, which is highest 
in grade IV glioma, a tumor type with poor prognosis 
(Duncan et  al., 2010). Interestingly, intrachromosomal 
FGFR1-TACC1 and FGFR3-TACC3 gene fusions have also 
been recently detected in subsets of glioblastoma and 
bladder cancer patients (Singh et al., 2012; Williams et al., 
2012; Parker et  al., 2011). These fusion proteins display 
a constitutive FGFR tyrosine kinase activity presumably 
activating downstream signaling effector pathways, local-
ize to mitotic spindle poles obviously due to the presence 
of the C-terminally fused TACC domain, are associated 
with aneuploidy, and display pro-proliferative and onco-
genic activities both in vitro and in vivo. In this regard, 
TACC3 influences PI3K/Akt and ERK signaling associ-
ated with tumorigenic epithelial-mesenchymal transition 
(EMT) and cell migration/invasion (Ha et al., 2013b).

Moreover, TACC3 linked [e.g., hepatoma up-regulated 
protein (HURP)] or interacting (e.g., chTOG or TSC2) 
proteins can be as well altered at the level of structure 
or expression in different transformed tumor cell types 
(overview in Ha et al., 2013a), therefore, potentially con-
tributing to tumorigenesis. For example, chTOG and 
HURP were identified as overexpressed genes in human 
hepatic carcinomas (Charrasse et  al., 1995; Tsou et  al., 
2003), and mutations of the tumor suppressor protein 
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TSC2 were initially observed in renal carcinogenesis and 
hepatic hemangiomatosis (Kobayashi et al., 1999).

Taking these findings into account, it is tempting to 
speculate that members of the mitotic Aurora-A-TACC3-
chTOG axis act as ‘driver’ factors in tumor development 
and, hence, represent potential therapeutic targets. 
Indeed, conditional loss of the TACC3 gene expression 
leads to apoptosis and tumor regression in vivo in the p53-/-  
mouse sarcolymphoma model (Yao et  al., 2011). A role 
of TACC3 in chemoresistance and the cellular response 
to antimitotics can also be envisioned, given that RNAi-
mediated TACC3 depletion or treatment with the TACC3 
inhibitor KSH101 (Wurdak et  al., 2010) sensitizes tumor 
cells to the antiproliferative and apoptotic effects of 
paclitaxel (Schneider et al., 2008; Schmidt et al., 2010a; 
Cappell et al., 2012). Consistent with this, TACC depletion 
renders cells from D. discoideum also to be hypersensitive 
against the microtubule-depolymerizing drug thiabenda-
zole (Samereier et al., 2011).

Conclusion and open questions
The Aurora-A kinase regulated TACC3-chTOG-CHC protein 
complex plays a pivotal role in centrosomal function 
and mitotic spindle assembly and dynamics (Figure 6). 
Despite the current insight into the TACC isoform expres-
sion and function (Peset and Vernos, 2008; Zyss and 
Gergely, 2009; Royle, 2012; Ha et  al., 2013b), various 
molecular and cellular aspects of TACC (patho)biology 
await further investigation. For instance, there is lack 
of insight into the three-dimensional structure of the 
TACC3 domains mediating the interaction with chTOG or 
clathrin heavy chain. Another issue is the analysis of the 
role of dephosphorylation as regulatory mechanism to 

control the mitotic pools of pTACC3 vs. TACC3. An inter-
action of DTACC with the microtubule-associated protein 
Mars, which binds directly to protein phosphatase PP1, 
thereby promoting DTACC dephosphorylation, has been 
reported (Tan et al., 2008). Interestingly, HURP represents 
the Mars homolog in higher vertebrates that localizes to 
kinetochore microtubules (k-fibers) close to chromosomes 
(Sillje et al., 2006). HURP was described as an oncogenic 
target of Aurora-A kinase (Yu et al., 2005), thereby, con-
trolling the microtubule-binding capacity of HURP (Wong 
et al., 2008). Thus, HURP may recruit PP1 or a currently 
unknown phosphatase to the microtubules and, hence, 
control spindle dynamics by balancing pTACC3/TACC3 
levels (Figure 6). Lastly, structure-function analyses of 
putative ‘driver’ TACC1 and TACC3 mutations in human 
cancers with respect to mitotic loss-of-function or gain-of-
function phenotypes is required. The latter apply, in par-
ticular, to genomic instability, checkpoint activation, and 
oncogenic signaling.
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