000140002 001__ 140002
000140002 005__ 20210129212738.0
000140002 0247_ $$2doi$$a10.1371/journal.pone.0078399
000140002 0247_ $$2WOS$$aWOS:000327162900014
000140002 0247_ $$2Handle$$a2128/5651
000140002 037__ $$aFZJ-2013-05969
000140002 041__ $$aEnglish
000140002 082__ $$a500
000140002 1001_ $$0P:(DE-Juel1)140589$$aPoojari, Chetan$$b0
000140002 245__ $$aStability of Transmembrane Amyloid ß-Peptide and Membrane Integrity Tested by Molecular Modeling of Site-Specific Aß$_{42}$ Mutations
000140002 260__ $$aLawrence, Kan.$$bPLoS$$c2013
000140002 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s140002
000140002 3367_ $$2DataCite$$aOutput Types/Journal article
000140002 3367_ $$00$$2EndNote$$aJournal Article
000140002 3367_ $$2BibTeX$$aARTICLE
000140002 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000140002 3367_ $$2DRIVER$$aarticle
000140002 520__ $$aInteractions of the amyloid β-protein (Aβ) with neuronal cell membranes, leading to the disruption of membrane integrity, are considered to play a key role in the development of Alzheimer’s disease. Natural mutations in Aβ42, such as the Arctic mutation (E22G) have been shown to increase Aβ42 aggregation and neurotoxicity, leading to the early-onset of Alzheimer’s disease. A correlation between the propensity of Aβ42 to form protofibrils and its effect on neuronal dysfunction and degeneration has been established. Using rational mutagenesis of the Aβ42 peptide it was further revealed that the aggregation of different Aβ42 mutants in lipid membranes results in a variety of polymorphic aggregates in a mutation dependent manner. The mutant peptides also have a variable ability to disrupt bilayer integrity. To further test the connection between Aβ42 mutation and peptide–membrane interactions, we perform molecular dynamics simulations of membrane-inserted Aβ42 variants (wild-type and E22G, D23G, E22G/D23G, K16M/K28M and K16M/E22G/D23G/K28M mutants) as β-sheet monomers and tetramers. The effects of charged residues on transmembrane Aβ42 stability and membrane integrity are analyzed at atomistic level. We observe an increased stability for the E22G Aβ42 peptide and a decreased stability for D23G compared to wild-type Aβ42, while D23G has the largest membrane-disruptive effect. These results support the experimental observation that the altered toxicity arising from mutations in Aβ is not only a result of the altered aggregation propensity, but also originates from modified Aβ interactions with neuronal membranes.
000140002 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0
000140002 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000140002 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b1$$eCorresponding Author
000140002 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0078399$$gVol. 8, no. 11, p. e78399 -$$n11$$pe78399 $$tPLoS one$$v8$$x1932-6203$$y2013
000140002 8564_ $$yPublishers version according to licensing conditions.$$zPublished final document.
000140002 8564_ $$uhttps://juser.fz-juelich.de/record/140002/files/FZJ-2013-05969.pdf$$yOpenAccess$$zPublished final document.
000140002 8564_ $$uhttps://juser.fz-juelich.de/record/140002/files/FZJ-2013-05969.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000140002 8564_ $$uhttps://juser.fz-juelich.de/record/140002/files/FZJ-2013-05969.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000140002 8564_ $$uhttps://juser.fz-juelich.de/record/140002/files/FZJ-2013-05969.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000140002 909CO $$ooai:juser.fz-juelich.de:140002$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000140002 9101_ $$0I:(DE-Juel1)ICS-6-20110106$$6P:(DE-Juel1)140589$$aStrukturbiochemie $$b0$$kICS-6
000140002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140589$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000140002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000140002 9132_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000140002 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0
000140002 9141_ $$y2013
000140002 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000140002 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000140002 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000140002 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000140002 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000140002 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000140002 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000140002 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000140002 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000140002 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000140002 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000140002 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000140002 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000140002 920__ $$lyes
000140002 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000140002 9801_ $$aFullTexts
000140002 980__ $$ajournal
000140002 980__ $$aUNRESTRICTED
000140002 980__ $$aFullTexts
000140002 980__ $$aI:(DE-Juel1)ICS-6-20110106
000140002 980__ $$aVDB
000140002 981__ $$aI:(DE-Juel1)IBI-7-20200312