000140040 001__ 140040
000140040 005__ 20240708132700.0
000140040 037__ $$aFZJ-2013-06003
000140040 041__ $$aEnglish
000140040 1001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b0$$eCorresponding author$$ufzj
000140040 1112_ $$aInternational Conference on Processing and Manufacturing of Advanced Materials$$cLas Vegas$$d2013-12-01 - 2013-12-06$$gTHERMEC 2013$$wUSA
000140040 245__ $$aSOLID-STATE LITHIUM BATTERIES
000140040 260__ $$c2013
000140040 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1391603906_16388
000140040 3367_ $$033$$2EndNote$$aConference Paper
000140040 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000140040 3367_ $$2ORCID$$aOTHER
000140040 3367_ $$2DRIVER$$aconferenceObject
000140040 3367_ $$2BibTeX$$aINPROCEEDINGS
000140040 520__ $$aBatteries belong to the most efficient storage media for electrical energy. Among the battery types commonly used today, lithium batteries have the highest energy density with regard to weight as well as with regard to volume. Up to now, they are mainly used for small-scale applications like cell phones, but future use may also include lithium batteries in electric cars or for large-scale storage of renewable wind and solar energy. 
Major problems arise from the liquid organic electrolyte of today’s lithium batteries, which is corrosive, sensitive to air and water, and particularly highly flammable.  A scale-up of the battery size also amplifies the risk of accidental over-heating and subsequent explosion.
Solid-state batteries circumvent the problems of organic electrolytes by using inorganic lithium ion conductors as electrolytes. In the oxide class of lithium ion conductive materials Li7La3Zr2O12 (LLZ) has the highest reported Li ion conductivity. Especially their inherent safety, easy handling and compatibility with metallic Lithium make them most promising candidates for solid-state batteries. Since LLZ exhibits considerably lower ion conductivity than liquid electrolytes, a thin-film electrolyte approach was chosen to reduce the overall ohmic resistance of the electrolyte. 
Focal points of this work are manufacturing of solid-state batteries by means of thin-film technologies that are qualified for large-scale production, analysis of the composition and phases of the electrochemically active layers of the battery, and electrochemical performance analyses of the materials used.
000140040 536__ $$0G:(DE-HGF)POF2-435$$a435 - Energy Storage (POF2-435)$$cPOF2-435$$fPOF II$$x0
000140040 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000140040 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b1$$ufzj
000140040 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b2$$ufzj
000140040 7001_ $$0P:(DE-Juel1)145805$$aBünting, Aiko$$b3$$ufzj
000140040 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b4$$ufzj
000140040 7001_ $$0P:(DE-Juel1)133840$$aBreuer, Uwe$$b5$$ufzj
000140040 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, Hans Peter$$b6$$ufzj
000140040 909__ $$ooai:juser.fz-juelich.de:140040$$pVDB
000140040 909CO $$ooai:juser.fz-juelich.de:140040$$pVDB
000140040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000140040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000140040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000140040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145805$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000140040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000140040 9101_ $$0I:(DE-Juel1)ZEA-3-20090406$$6P:(DE-Juel1)133840$$aAnalytik$$b5$$kZEA-3
000140040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133840$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000140040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000140040 9131_ $$0G:(DE-HGF)POF2-435$$1G:(DE-HGF)POF2-430$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lNANOMIKRO$$vEnergy Storage$$x0
000140040 9141_ $$y2013
000140040 920__ $$lyes
000140040 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000140040 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1
000140040 980__ $$aabstract
000140040 980__ $$aVDB
000140040 980__ $$aUNRESTRICTED
000140040 980__ $$aI:(DE-Juel1)IEK-1-20101013
000140040 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000140040 981__ $$aI:(DE-Juel1)IMD-2-20101013
000140040 981__ $$aI:(DE-Juel1)ZEA-3-20090406