001     140040
005     20240708132700.0
037 _ _ |a FZJ-2013-06003
041 _ _ |a English
100 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 0
|u fzj
|e Corresponding author
111 2 _ |a International Conference on Processing and Manufacturing of Advanced Materials
|w USA
|c Las Vegas
|d 2013-12-01 - 2013-12-06
|g THERMEC 2013
245 _ _ |a SOLID-STATE LITHIUM BATTERIES
260 _ _ |c 2013
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1391603906_16388
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Batteries belong to the most efficient storage media for electrical energy. Among the battery types commonly used today, lithium batteries have the highest energy density with regard to weight as well as with regard to volume. Up to now, they are mainly used for small-scale applications like cell phones, but future use may also include lithium batteries in electric cars or for large-scale storage of renewable wind and solar energy. Major problems arise from the liquid organic electrolyte of today’s lithium batteries, which is corrosive, sensitive to air and water, and particularly highly flammable. A scale-up of the battery size also amplifies the risk of accidental over-heating and subsequent explosion. Solid-state batteries circumvent the problems of organic electrolytes by using inorganic lithium ion conductors as electrolytes. In the oxide class of lithium ion conductive materials Li7La3Zr2O12 (LLZ) has the highest reported Li ion conductivity. Especially their inherent safety, easy handling and compatibility with metallic Lithium make them most promising candidates for solid-state batteries. Since LLZ exhibits considerably lower ion conductivity than liquid electrolytes, a thin-film electrolyte approach was chosen to reduce the overall ohmic resistance of the electrolyte. Focal points of this work are manufacturing of solid-state batteries by means of thin-film technologies that are qualified for large-scale production, analysis of the composition and phases of the electrochemically active layers of the battery, and electrochemical performance analyses of the materials used.
536 _ _ |a 435 - Energy Storage (POF2-435)
|0 G:(DE-HGF)POF2-435
|c POF2-435
|x 0
|f POF II
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 1
|u fzj
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 2
|u fzj
700 1 _ |a Bünting, Aiko
|0 P:(DE-Juel1)145805
|b 3
|u fzj
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 4
|u fzj
700 1 _ |a Breuer, Uwe
|0 P:(DE-Juel1)133840
|b 5
|u fzj
700 1 _ |a Buchkremer, Hans Peter
|0 P:(DE-Juel1)129594
|b 6
|u fzj
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:140040
909 C O |o oai:juser.fz-juelich.de:140040
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145805
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129662
910 1 _ |a Analytik
|0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|b 5
|6 P:(DE-Juel1)133840
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)133840
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129594
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-430
|0 G:(DE-HGF)POF2-435
|2 G:(DE-HGF)POF2-400
|v Energy Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l NANOMIKRO
914 1 _ |y 2013
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21