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[1] Chemical state analyses of the atmosphere based on data assimilation may be
degraded by inconsistent covariances of background and observation errors. An efficient
method to calculate consistency diagnostics for background and observation errors in
observation space is applied to analyses of the four‐dimensional variational stratospheric
chemistry data assimilation system SACADA (Synoptic Analysis of Chemical Constituents
by Advanced Data Assimilation). A background error covariance model for the
assimilation of Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)
ozone retrievals is set up and optimized. It is shown that a significant improvement of the
assimilation system performance is attained through the use of this covariance model
compared to a simple covariance formulation, which assumes background errors to be a
fixed fraction of the field value. The forecast skill, measured by the distance between the
model forecast and MIPAS observations, is shown to improve. Further, an evaluation
of analyses with independent data from the Halogen Observation Experiment (HALOE),
the Stratospheric Aerosol and Gas Experiment II (SAGE II), and ozone sondes reveals that
the standard deviation of ozone analyses with respect to these instruments is reduced
throughout the middle stratosphere. Compared to the impact of background error variances
on analysis quality, it is found that the precise specification of spatial background error
correlations appears to be less critical if observations are spatially and temporally dense.
Results indicate that ozone forecast errors of a state of the art stratospheric chemistry
assimilation system are of the same order of magnitude as MIPAS observation errors.
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1. Introduction

[2] A posteriori validation of error statistics is an indis-
pensable means in order to control and adjust the error
covariances employed in data assimilation (DA) algorithms.
This is particularly true for variational assimilation schemes,
which owe their efficiency to the fact, that the background
error covariance matrix (BECM) is prescribed a priori, and
that no analysis error covariance matrix of the analyzed
fields is provided.
[3] Methods for a posteriori validation of assimilation

algorithms do not provide error covariances directly, rather
they offer a set of diagnostic constraints. Hence, background
and observation error covariances can be iteratively adapted
until the diagnostic’s result is in agreement with the theo-
retically expected value (this iterative process is referred to

as “tuning” or “optimization” of error covariances in this
text). The most popular among these a posteriori validation
tests is the c2 criterion, which is being widely used in all
kind of inverse problems [see e.g., Rodgers, 2000]. In
atmospheric data assimilation applications Ménard et al.
[2000a], Khattatov et al. [2000], and Chipperfield et al.
[2002] tuned free parameters of the BECM parameteriza-
tion in their Kalman filter variants by c2 validation. Also, the
same criterion has been used to monitor changes in obser-
vation errors [Stajner et al., 2004], or to asses the overall
consistency of the specified error statistics [Baier et al.,
2005; Elbern et al., 2007].
[4] However, for the purpose of a differentiated validation

of covariances, the c2 test remains insufficient, as it does not
distinguish between contributions of observation and back-
ground errors to the c2 value. To overcome this deficiency,
Desroziers and Ivanov [2001], Chapnik et al. [2004], and
Chapnik et al. [2006] have extended the c2 validation for a
variational DA setting, in order to validate individual
components of the objective function. They demonstrated
that their method is well suited to correct observation error
variances for subsets of mutually uncorrelated observations.
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However, as traces of large matrices have to be estimated
during the course of this procedure, the Desroziers and
Ivanov method involves considerable additional algorithmic
expenses in terms of implementation and computational
cost.
[5] Building on works of Hollingsworth and Lönnberg

[1986] and Lönnberg and Hollingsworth [1986], the exami-
nation of innovation (observation‐minus‐forecast) vector
statistics has been used to determine the error statistics of
short‐range forecasts in meteorological applications [e.g.,
Xu et al., 2001; Daley, 1991]. Because the innovations are
calculated anyway by an assimilation system, this technique
causes practically no additional computational cost. As a
prerequisite for applicability, the Hollingsworth and
Lönnberg method requires that observation errors be hori-
zontally strictly uncorrelated, in order to separate the con-
tribution of observation and background errors to the
innovation statistics. Therefore, this method is not very well
suited for data from space‐borne remote sensing devices, as
the (usually unknown) horizontal correlation of observation
errors is likely to degrade the results.
[6] Desroziers et al. [2005] have devised an extended set

of diagnostic quantities, based on the statistics of the inno-
vation vector, the observation‐minus‐analysis vector, and
the analysis‐minus‐background vector in observation space.
In contrast to the Hollingsworth and Lönnberg method,
separate diagnostics are available for background and
observation errors. Furthermore, a formula for analysis error
(in observation space) is given. Recently, these diagnostic
tools have been used by Bonavita et al. [2008] and Li et al.
[2009] to adjust error covariances in their ensemble Kalman
filter applications.
[7] The objectives of this study are the evaluation of the

Desroziers et al. [2005] method (hereafter referred to as
Desroziers et al. method) in the context of four‐dimensional
variational (4D‐var) chemistry data assimilation, and the
application of this technique to the optimization of back-
ground error covariances of the SACADA assimilation
system, which has been introduced in a recent paper by
Elbern et al. [2010], hereafter referred to as ESB10. In
contrast to ESB10, the present work focuses on the assim-
ilation of ozone only. The Desroziers et al. method is
applied to adjust spatially averaged background error var-
iances in four height ranges for the assimilation of MIPAS
ozone retrievals. This approach improves the representation
of the BECM compared to ESB10, where the background
error variances were taken to be a fixed fraction of the field
value. It must be noted that the flow‐dependent extension of
the SACADA BECM parameterization, which was described
in ESB10, is not considered here. In this work it is attempted
to derive an optimal setting for the background error cor-
relation length scale under the assumption of isotropy and
homogeneity.
[8] This paper is organized as follows: In section 2 the

theory underlying the diagnostic tools, which have been
used to evaluate and tune the parameters of the SACADA
BECM model, is briefly reviewed. Section 3 provides an
overview of the SACADA assimilation system and the
observational data used for this work. The tuning strategy
pursued for this study as well as the practical application of
the Desroziers et al. method are outlined in section 4.
Assimilation results produced with the optimized error

covariances are compared to analyses obtained with the
untuned BECM model in section 5. The potential and
restrictions of the method are finally discussed in section 6.

2. A Posteriori Validation of Error Covariances

2.1. Diagnosis of Error Statistics in Observation Space

[9] Let y, xb and xa be the set of p observations, the
forecast (background) state and the analyzed state, respec-
tively. Desroziers et al. [2005] have shown, that the dif-
ferences between the analysis and background fields,
projected into observation space by the generally nonlinear
operator H, and the observations

dob :¼ y� H xb
� �

;
dab :¼ H xað Þ � H xb

� �
;

doa :¼ y� H xað Þ;

can be used to diagnose the consistency of covariance
matrices. Their approach is based on the fact that, assuming
a perfect assimilation system, the following relations hold:

E dab dob
� �Th i

¼ HeBHT; ð1Þ

E doa dob
� �Th i

¼ eR; ð2Þ

E dab doa
� �Th i

¼ HeAHT; ð3Þ

E dob dob
� �Th i

¼ HeBHT þ eR; ð4Þ

Here, E[ ] is the expectation operator, and ~R, ~B, ~A are the
observation, background, and analysis error covariance
matrices, respectively. As the observation operator H may
be nonlinear, matrix H is the Jacobian of H at the analysis
point, i.e.,

H :¼
@H

@x

����
x¼xa:

In practice, the covariances ~R and particularly ~B are not well
known and approximations R and B must be used within the
data assimilation algorithm. As a consequence of equations
(1) to (4), a necessary condition for B and R to be correctly
specified is given by

B � ~B and R � ~R: ð5Þ

In the following text, ~R, ~B and ~A are referred to as “diag-
nosed” error covariances, as they are evaluated a posteriori
based on assimilation results. In contrast, R and B denote
the error covariances used to obtain the analyses, which can
be optimized in order to fulfill condition (5).
[10] It should be noted that equations (1) to (4) are based

on linear estimation theory. For variational methods to be
equivalent to linear estimation schemes, it is required that
background and observation errors are Gaussian distributed
[e.g., Talagrand, 1997]. Further, in the nonlinear case, it has
to be assumed that H(xa) − H(xb) ≈ H(xa − xb), that is, the
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linear approximation is sufficiently valid within the range
spanned by the statistically probable realizations of analysis
increments dxa = x

a
− x

b. As a necessary condition for the
former prerequisite to be true, the observation‐minus‐
background differences db

o must show a Gaussian distribu-
tion. This condition has been tested prior to application of
the Desroziers et al. method in section 4.2.
[11] Equation (4) is the basis of the well‐known method of

Hollingsworth and Lönnberg [Hollingsworth and Lönnberg,
1986; Lönnberg and Hollingsworth, 1986]. In order to
extract information about B and R from (4), observation
errors must be strictly uncorrelated in space [see e.g., Daley,
1991], which is the case for data from a radiosonde net-
work. In contrast, it is unlikely that observations from
orbiting remote sensing instruments fulfill this requirement.
Therefore, the diagnostics conducted in this work relies on
(1) and (2).
2.1.1. Limitations of the Method
[12] If the covariance diagnostic outlined above, is con-

ducted in the framework of a 4D‐var assimilation system,
the observation operator H contains a model integration and,
consequently, the calculation of ~B from H~BHT as well as the
calculation of ~A from H~AHT would require tangent linear
and adjoint model integrations. Therefore, it is not feasible
to separate ~B and ~A from H~BHT and H~AHT, and the method
remains restricted to observation space. However, it has
been shown by Cohn [1993] that, given a passive tracer
field, the background error variances evolve in time
according to the model dynamics, that is, the variances of
the tracer field are simply advected. This result provides the
basis for background error covariance parameterizations in
numerous Kalman filter applications [e.g., Ménard et al.,
2000b; Khattatov et al., 2000; Fierli et al., 2002; Segers
et al., 2005; Rösevall et al., 2007]. In the framework of
this study, the diagonal elements of ~B are approximated as
mean values of diagonal elements of H~BHT located in the
same region. In view of the findings cited above, this
approach can be considered valid, as long as the chemical
lifetime of the assimilated trace gases is large compared to
the time span defined by the 4D‐var assimilation window. It
should be noted that these constraints are likely to hamper the
applicability of the Desroziers et al. covariance diagnostic in
a 4D‐var system for short‐lived species like stratospheric
NO2.
[13] Further, it should be stressed at this point that

equations (1) and (2) provide a consistency check only:
Given a set of background, analysis, and observation values
together with respective error estimates, the diagnosed
quantities ~R and ~B can be compared to R and B. However, a
good match of diagnosed and specified covariances is no
more than a necessary condition for R and B to be correct.
Further, although it is an obvious idea to tune the error
covariances by iteratively replacing R and B by matrices
that come closer to their diagnosed counterparts, there is
neither a general proof of convergence, nor a proof that there
exists a unique solution. Desroziers et al. [2005] demon-
strated success in tuning background and observation error
covariances at the same time using a synthetic toy problem. In
practice, however, linear estimation theory is an approxima-
tion only (nonlinear, nonperfect model, deviations from
perfect Gaussian error statistics, etc.), and the evaluation of
equations (1) to (4) requires some simplifying assumptions.

In section 4.3 of this study, it is shown that under these
conditions a unique solution for tuning B and R simulta-
neously might not be found.
[14] For the purpose of this study, it was therefore decided

to restrict the problem to tuning B only, unless consistency
with a given matrix R is obtained. Since sophisticated
methods are employed to derive the retrieval error statistics
of remote sensing data [Rodgers, 2000; Raspollini et al.,
2006], and because extensive validation activities have
taken place in recent time (see Cortesi et al. [2007] for
information on the validation of MIPAS O3 retrievals), it is
supposed that the observation error covariance matrix R is
considerably better known than the background error of the
newly developed SACADA assimilation system. R is
therefore taken as fixed in this study. Equations (1) and (2)
are applied to adapt B until equation (5) is satisfied.
2.1.2. Treatment of Systematic Retrieval Errors
[15] Errors in the retrieval of atmospheric constituents, are

traditionally classified as systematic or random. The random
error is due to the propagation of measurement noise
through the retrieval process, while systematic errors origi-
nate from uncertain spectral data, calibration parameters,
errors in radiative transfer modeling and other sources. The
classification of errors as systematic or random is somewhat
vague, because systematic errors may vary in time and space
and an error component considered as systematic may
appear random on a different spatial or temporal scale. A
comprehensive discussion of this issue can be found in the
textbook of Rodgers [2000].
[16] In most cases, a systematic error will cause a bias of

the retrieval against the true atmospheric state, which may
be constant or vary slowly in space and/or time. Random,
zero‐mean errors of background and observations, however,
are a prerequisite for the applicability of the theory outlined
above. Likewise, most data assimilation algorithms including
4D‐var are designed to correct random, zero‐mean errors in
the background field based on observations with random,
zero‐mean errors. Therefore, an “optimal” analysis in prin-
ciple requires a removal of observational and/or model
bias prior to or during the assimilation procedure. Several
methods for bias correction in data assimilation schemes
have been proposed and tested in recent time [see Dee,
2005, and references therein].
[17] However, since a bias correction of MIPAS retrievals

is beyond the scope of this study, it must be questioned
under which conditions an evaluation of the SACADA
assimilation system using the Desroziers et al. method can
be useful. As shown by Dee [2005], 4D‐var, like most
current data assimilation algorithms is “bias blind”, and
biases either originating from the model or the observations
are linearly transferred to the analysis. In an operational
setting, the background for the next assimilation cycle is
then computed starting from a biased analysis. Now, sup-
pose that (1) time variation of systematic errors is slow
compared to the timescale established by the assimilation
window, that is, any measurement bias is nearly constant in
time; (2) the spatial structure of systematic errors is smooth
compared to structures induced by atmospheric chemistry
and dynamics; and (3) the biased atmospheric state
represented by the observations is not forbidden by chemical
and dynamical constraints encoded in the model. Conse-
quently, after a few assimilation cycles, the model forecast
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(background) is forced to nearly reproduce the bias pattern
of the assimilated measurements. Whether this is actually
the case, can be revealed by inspection of observation‐
minus‐background residuals. A zero expectation

E dob
� �

� 0 ð6Þ

confirms that measurement bias is readily forecasted by the
assimilating model. Note that these considerations do not
apply if observations from more than one source are
assimilated simultaneously. In this case systematic errors
are likely to show different spatial distributions, prohibiting
the adaption of the model forecast to any of these bias
patterns.
[18] In conclusion, as long as additional information, that

is independent measurements, is absent, and if condition
(6) is fulfilled, a measurement bias cannot be detected
within the data assimilation scheme and the system behaves
as if unbiased observations were assimilated. Consequently,
systematic errors must not be included in R in this case. The
central prerequisite for doing so, that is, a (near) zero bias in
observation‐minus‐background residuals, has been exam-
ined in this study prior to the application of the Desroziers
et al. method (see section 4.2). Although the analysis obtained
with this setup will be biased against the (unknown) true
atmospheric state, a number of useful evaluation tests can be
conducted without limitation. For example, the quality of a
model forecast can be evaluated with respect to observations
from the same instrument, and it can be tested whether a
specific setting for error covariances improves or degrades
the forecast skill. It must be noted, however, that some
systematic error sources may contribute to the random error
rather than resulting in a retrieval bias and, consequently,
should be included in R. This issue is further discussed in
section 3.2.

2.2. c
2 Diagnostics and Forecast Skill

[19] The innovation vector db
o is a Gaussian random vector

with covariance HBHT + R. Thus, if the covariances R and
B are correctly specified, the quantity

z :¼ doTb HBHT þ R
� ��1

dob ð7Þ

is c2 distributed with p degrees of freedom. Also, it is well
known [see, e.g., Talagrand, 2003] that the cost function J
at its minimum can be expressed as J(xa) = z/2. Therefore,
Jp
a: = J(xa)/p is c2

‐distributed, satisfying

E J ap

h i
¼ 1=2: ð8Þ

Criterion (8) can be used to survey the overall consistency of
the specified error covariances.
[20] A further and independent means to asses the quality

of covariance matrices a posteriori, is to compare different
covariance settings with respect to the forecast skill of the
assimilating model. The cost function value prior to
assimilation (at the first iteration), normalized by the number
of observations p

J fp :¼ JðxbÞ=p ¼
1

2p
y� HðxbÞ
� �T

R�1 y� HðxbÞ
� �

ð9Þ

is a measure of forecast quality with respect to observations
that are about to be assimilated. A well‐behaved data
assimilation system will allow for improving forecasts the
closer B and R represent the true covariances.

3. Assimilation System and Observational Data

3.1. SACADA Assimilation System

[21] SACADA is a 4D‐var assimilation system for strato-
spheric trace gas observations. Here, only a brief overview
of the system will be given, for a comprehensive descrip-
tion and for first evaluation results the reader is referred to
ESB10. A stratospheric global chemistry transport model
(CTM) and its adjoint version is kernel of the new SACADA
system. The German Weather Service’s global forecast
model GME [Majewski et al., 2001] serves as the meteo-
rological driver for the CTM, providing meteorological
fields at the same temporal and spatial locations where they
are needed by the chemistry module. GME utilizes an ico-
sahedral grid structure and a semi Lagrange scheme for
horizontal advection, which are adopted for the SACADA
CTM. The stratospheric chemistry module accounts for
167 gas phase and 10 heterogeneous reactions involving
48 stratospheric constituents. Background error covariances
are parameterized using a diffusion approach devised by
Weaver and Courtier [2001]. A quasi‐newton limited
memory Broyden Fletcher Golfarb Shanno (L‐BFGS) algo-
rithm [Nocedal, 1980; Liu and Nocedal, 1989] is employed
for the minimization of the cost function. The general
assimilation system setup was the same as in ESB10: The
meteorological simulation is initialized at the start of each
24 h assimilation window with fields from European Centre
for Medium‐Range Weather Forecasts (ECMWF) analyses.
The analyzed chemical fields from the end of one assimila-
tion window are used as the background for the next assim-
ilation cycle.

3.2. MIPAS Data and Error Characterization

[22] MIPAS V4.61 offline level 2 data have been assim-
ilated in this study. The MIPAS instrument is a Fourier
transform spectrometer on board of the European Space
Agency’s (ESA) Environmental Satellite (EnviSat). EnviSat
has been placed in a Sun‐synchronous polar orbit with an
inclination of 98.55°. The orbit is almost circular at about
800 km altitude resulting in a total of 14.3 orbits that are
performed each day. MIPAS measures high‐resolution
emission spectra in the midinfrared from 4.1 to 14.7 mm
wavelength in a limb viewing mode. A single limb scan
covers an altitude range from approximately 6 to 68 km by
17 steps. A detailed description of the instrument design can
be found in the work of Fischer and Oelhaf [1996].
[23] Raspollini et al. [2006] provide a comprehensive

description of the ESA offline data processing along with its
error budget. The data product contains estimates of the
instrument noise (random) error covariance matrix for each
retrieved MIPAS profile. For the purpose of this study, error
covariances within the MIPAS profiles have been neglected
(R was taken to be diagonal). MIPAS spatial resolution is
estimated to be 3 × 30 × 300 km in the vertical direction,
perpendicular to, and along the line of sight, respectively
[e.g., Fischer et al., 2008]. This spatial resolution is com-
parable to the SACADA model grid resolution, which, in
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the current model setup, is ≈250 km in the horizontal and
≈2 km in the vertical direction. Therefore, it can be expected
that MIPAS observations are largely representative for the
atmospheric state within a single model grid cell, and an
error of representativeness was not included in R. Errors
arising due to the interpolation of modeled ozone to the
location of observation have been neglected. The impact of
these simplifications is assumed to be small compared with
other uncertainties in the observation error statistics. The
given standard deviations so have been increased in some
cases, as unrealistic small error estimates severely hamper
the performance of the minimization algorithm. Therefore, a
minimum absolute error margin of 0.08 parts per million
(ppm) and a minimum relative error of 5% have been pre-
scribed for MIPAS observational errors.
[24] Systematic error estimates calculated according to

Dudhia et al. [2002; see also Raspollini et al., 2006] are
available for five generic atmospheric conditions (data can
be obtained from http://www‐atm.physics.ox.ac.uk/group/
mipas/err/). There exists one major systematic error source,
the mapping of the pressure‐temperature retrieval random
error into the volume mixing ratio retrieval (referred to as
“pT error” hereafter), which is uncorrelated between any
two ozone profiles and should be included in R. The mag-
nitude of this error is estimated to be 4% to 6% of the
retrieved ozone value in the altitude range of interest.
Tuning experiments without and with a 5% pT error
contribution added to R have been conducted for this study.
As the bias of observation‐minus‐background residuals
remains small (see below), other systematic error sources
have not been included in R following the rationale given in
section 2.1.2.

3.3. Validation Data

[25] HALOE, SAGE II, and ozone sonde measurements
have been used as independent (not assimilated) validation
data for the BECM tuning experiments performed in this
study. Both, HALOE and SAGE II, are solar occultation
type spectrometers [e.g., Nazaryan et al., 2005], which have
been operational from 1991 to 2005, and from 1984 to 2005,
respectively. The SAGE II instrument was carried by the
Earth Radiation Budget Satellite (ERBS) spacecraft and
operated in the UV, visible and near‐infrared (385–1020 nm)
wavelength region. Due to the orbit geometry, tangent point
locations vary slowly from 70°N to 70°S within approxi-
mately one month. In this study data product version 6.2 has
been employed, which, for ozone retrievals, is a minor
update to version 6.1 [Wang et al., 2002]. The HALOE
sensor [Russell et al., 1993] on board the Upper Atmosphere
Research Satellite (UARS) recorded spectra in the infrared
wavelength region of about 30 occultation events per day.
As in the case of SAGE II, the latitude of tangent point
location changes slowly from day to day, covering a range
of 80°N to 80°S within approximately one month. The latest
data product release (version 19) has been used for valida-
tion. Since the retrieval grids of HALOE and SAGE II data
products have a finer vertical spacing than the SACADA
model grid, data points within one model layer are averaged
before they are used for validation of analyzed ozone.
[26] Finally, ozone sonde profiles have been obtained

from the World Ozone and Ultraviolet Radiation Data
Centre (WOUDC, http://www.woudc.org/) for validation of

the BECM tuning procedure. Since ozone sondes offer a
considerably higher vertical resolution than the SACADA
model, sonde measurements within each model layer have
been averaged prior to comparison with analyses.

4. Tuning of Background Error Covariances

4.1. Tuning Strategy

[27] The background error covariance matrix B can be
decomposed into a correlation matrix C and a diagonal
matrix S: = diag(s1

b,…,sn
b) containing the background error

standard deviations:

B ¼ SCS:

Hence, the problem of finding a suitable BECM formulation
can be split into two separate tasks, namely, to specify
correct standard deviation values sk

b for each model grid
point k = 1, …, n, and to find an appropriate spatial corre-
lation structure to be encoded in the parameterization of C.
Although the diffusion approach implemented in the
SACADA assimilation system allows for a fully flexible
anisotropic and inhomogeneous specification of background
error correlations, it was decided, as a starting point for the
current study, to use a relatively simple correlation structure,
defined by a global horizontal and a vertical correlation
length scale Lh and Lv, respectively. Furthermore, as the
focus of this study has been placed on horizontal back-
ground error correlations, the parameter Lv has been kept
fixed at a value of 1.5 km, which is the order of magnitude
of the vertical grid spacing. This value has been chosen ad
hoc in order to provide a weak smoothing in the vertical
direction. For convenience, the subscript h is omitted in the
following text and the parameter L denotes the horizontal
correlation length scale of background errors.
[28] The tuning strategy pursued in this study is as fol-

lows: After a spin‐up assimilation of three days (employing
coarse estimates of S and L), the first step is to use
equations (1) and (2) in order to adjust sk

b iteratively (see
section 4.3 for details). After applying this procedure, the
error standard deviations sb and so are consistent, that is,
condition (5) is fulfilled for mean diagonal elements of R
and B. In order to avoid degradation of the results due to
model errors and/or misspecification of the correlation
length scale L (which is still untuned at this stage), the
tuning is performed on a subset of observations only. This
issue is extensively discussed in section 4.3.
[29] In a second step, a suitable correlation length scale L

for the parameterization of C is estimated based on (1). To
this end, a set of assimilation experiments has been con-
ducted, using the tuned background variances, but different
settings of L. Again, a special subset of observations, as
detailed in section 4.5, has to be chosen in order to obtain
meaningful results. The c2 criterion and an inspection of
forecast skill are used to validate the optimized length scale.
[30] The assumption implicit to the strategy of tuning L

independently of S is that the choice of L has a rather small
influence on the model forecast (the background field, or
more technically on db

o) in comparison to S. It is demon-
strated in sections 4.3 and 4.7 that this assumption is justi-
fied for a range of reasonable values of L. It should be
noted, that this statement apparently somewhat contradicts
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the premise that the BECM plays a major role in obtaining
meaningful analyses in data sparse regions. In fact, the
technique applied here for the tuning of L in model space
from data available in observation space, is feasible only if
observational data is sufficiently dense. In the case of
MIPAS data, where the distance between profiles is about
550 km along the orbit track, it seems to be possible to
extract information on correlation length scales larger than
≈400 km, as discussed in section 4.5. If data is significantly
sparser than the length scale established by L, a tuning of L
based on the theory outlined above is not possible.

4.2. Experimental Setup

[31] A period of three weeks in 2003 (21 October to
10 November) was chosen for performing the tuning
experiments. Note that this time span is also covered by the
second case study presented in ESB10. Data coverage from
the MIPAS sensor was dense within this time, and a large
number of profiles from HALOE and SAGE II are available
for validation. Although the BECM parameters derived in
this study are possibly time dependent, the general results
are not likely to be affected by the choice of a particular time
interval. In order to test the capabilities of the method, the
assimilation has been confined to ozone data only, and the
model domain was restricted to a range of 221 to 2.4 hPa
(approximately 11 to 41 km height). It must be noted that
this pressure range contains the upper troposphere in the
tropics. It is known that the quality of MIPAS data degrades
in the tropopause region and below [e.g., Cortesi et al.,
2007], and also the SACADA model has been set up for
stratospheric data assimilation. However, as tropospheric
MIPAS observations account for only 2% of the absolute
number of assimilated MIPAS measurements, it is not

expected that the limitations of model and observations in
the troposphere will significantly affect the global assimi-
lation results.
[32] For the purpose of this study, the model domain was

divided into four layers, as defined in Table 1, each layer
comprising 4 to 5 model levels or a height range of
approximately 8 km. A five‐parameter background error
covariance model was adjusted to the diagnosed background
errors using the approach outlined above. The five parameters
were taken to be the background error standard deviations
si
b, i = 1, …, 4 at the center of the four layers and one

correlation length scale L assumed to be valid for the whole
model domain. To obtain background errors for an arbitrary
model level, the SACADA BECM module linearly inter-
polates the enclosing values.
[33] An assimilation run over the whole three week period

with untuned BECM parameters, using the coarse estimate
of 30% relative background error and assuming a back-
ground error correlation length scale of L = 600 km, was
conducted to serve as a control run. The distribution of
control run observation‐minus‐background differences db

o,
compiled for the four altitude intervals i = 1, …, 4 is
shown in Figure 1. The db

o distributions are approximately
Gaussian, except for the lowermost layer, where an excess
of small difference values can be observed. This excess
can be explained by the contribution of tropospheric O3

observations, which account for 16% of the total number of
measurements in this layer. The db

o distributions do not
show a significant bias (<0.023 ppm), except for the
uppermost layer, where a bias of ≈0.1 ppm is found.
[34] It could be argued that an inspection of, for exam-

ple, observation‐minus‐background differences (Figure 1)
reveals without any additional diagnostics, that a 30%
background error is too large (30% error amounts to about
3 ppm in absolute values in the region of the ozone volume
mixing ratio maximum). In order to evaluate the impact of
an optimized BECM compared to a simple but more plau-
sible estimate of background errors, a second control run,
which switches the relative background error from 30% to
10% after a spin‐up assimilation of three days, was con-
ducted. For convenience, the two control runs employing
30% and 10% relative background error are referred to as
CTR30 and CTR10, hereafter.

Table 1. Definition of Model Layers for Tuning of Background

Error Standard Deviations

Index i
Model
Levels

Height
Range (km)

Pressure
Range (hPa)

1 25–28 16.5–11.2 96.1–221
2 20–24 23.9–16.5 30.0–96.1
3 15–19 32.4–23.9 8.3–30.0
4 10–14 41.3–32.4 2.4–8.3

Figure 1. Distribution of observation‐minus‐background differences obtained from the untuned assim-
ilation system. The differences are sampled over the time interval 24 October to 10 November 2003. A
Gaussian fit to the data is given by the solid curve, with the parameters (standard deviation s and mean a)
of the fit indicated in the box at the top right of each plot.
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4.3. Tuning of s
b

[35] The tuning of error standard deviations si
b was per-

formed for 24 October 2003, taking the first three days of
the CTR30 control run as a spin‐up assimilation. Following
Desroziers et al. [2005], the diagnosed values of back-
ground and observation error variances can be estimated
based on equations (1) and (2) by

~�b
i

� �2
¼ 1

pi
dab
� �T

i
dob
� �

i
¼ 1

pi

Xpi

j¼1
yaj � yb

j

� �
yoj � yb

j

� �
ð10Þ

~�o
i

� �2
¼ 1

pi
doa
� �T

i
dob
� �

i
¼ 1

pi

Xpi

j¼1
yoj � ya

j

� �
yoj � yb

j

� �
ð11Þ

for a subset of observations i with a number of pi observa-
tions. Here, yj

o is the jth observation in subset i, whereas yj
a

and yj
b are the corresponding analysis and background

counterparts, respectively. The subsets i were taken to
comprise all available observations within the model sub-
domain (altitude interval) i defined above.
[36] However, it turned out that the straightforward

application of (10) leads to a significant underestimation of
background errors. In order to avoid this fault, it is necessary
to understand how equations (10) and (11) interact: For

given background and observation values, the term (yj
o
− yj

b)
remains fixed while (yj

a
− yj

b) determines the contribution
of the jth summand to (~�i

b)2. If, on average, (yj
a
− yj

b) is
large, then the value of ~�i

b is diagnosed to be large. Con-
versely, if the analysis stays close to the background, a small
background error is diagnosed. If applied in a real world
4D‐var assimilation system, the term (yj

a
− yj

b) can remain
small due to the following reasons, which are beyond the
specification of a proper background error:
[37] 1. Violation of the perfect model assumption: The

model may not be able to reproduce some observations
within the assimilation window properly due to imperfect
model physics or due to model resolution. Hence, the
analysis ya often stays closer to yb than appropriate, that is,
closer to yb than it would do if the assimilating model was
perfect. A specific example for a kind of model error, which
is likely to occur in chemical modeling is depicted in
Figure 2a: Here, relaxation toward a chemical equilibrium
different from the true equilibrium state leads to an analysis
that approaches the background state with increasing time.
[38] 2. Background error correlations: Assume that

observation j has several neighboring observations within a
distance r. If the true correlation length Lt is small (Lt � r),
but the correlation length scale L, which is employed during
the assimilation procedure, is wrongly specified to be large,
i.e., L ≥ r, the assimilation algorithm will smooth out spatial
variability and only small analysis increments will emerge.
Consequently, the analysis will stay close to the background
state, as illustrated in Figure 2b.
[39] These considerations are not only of theoretical

nature, but have a strong influence on the diagnosed back-
ground errors. As an example for the first case, Figure 3
shows profiles of diagnosed background errors calculated
based on yb, ya and yo vectors from different time slices
within the 24 h assimilation window on 24 October 2003.
The growing influence of model error leads to smaller ~�b

Figure 2. Illustration of two specific cases for which the
straightforward application of the Desroziers et al. [2005]
method leads to an underestimation of background errors
and overestimation of observation errors. (a) Due to model
error and (b) due to misspecification of the correlation
length scale. See text for further explanation.

Figure 3. Diagnosed background error for different time
slices within the 24 h assimilation window (solid, 0–3 h;
dotted, 9–12 h; dashed, 21–24 h). Line styles for the differ-
ent time intervals are also indicated in the box at the top left.
All available MIPAS data on 24 October 2003 were
included in these calculations.
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values the farther the time interval is chosen from the model
start time. In Figure 4 profiles of ~�b obtained by assimilating
all available MIPAS data for the same date are shown for
different values of L. It can clearly be seen, that ~�b is con-
siderably smaller for large L.
[40] In oder to obtain a realistic estimate of sb, it was

decided to perform the diagnostic (10) and (11) on a subset
of observations only. This subset was chosen to be every
second MIPAS profile (“thinning” of observations) [e.g.,

Dando et al., 2007] within the time interval 00:00 UTC–
06:00 UTC on 24 October 2003. This choice ensures that
underestimation of ~�b due to the implications 1. and 2. given
above is largely excluded. Furthermore, the consequences
arising from the approximation that the diagonal elements of
~B are identified with the diagonal elements of H~BH

T are
reduced the less the analyzed observations are scattered in
time (i.e., the shorter the time window for the tuning process
is chosen). The geolocations of the 135 profiles selected for
the tuning process are shown in Figure 5. Tuning experi-
ments for two different settings of R have been performed.
The first experiment was conducted with observation error
standard deviations directly taken from the ESA data
product files, without accounting for any systematic error
sources. For the second experiment the observation errors
were modified to account for an 5% contribution from the
pT error (see section 3.2).
4.3.1. Tuning Experiment 1
[41] The tuning process was started by applying the

covariance diagnostics to the untuned assimilation system,
where a relative background error of 30% had been
assumed. As shown in Figure 6a the values of the diagnosed
quantities ~�o and ~�b significantly differ from so and the
first‐guess background standard deviation sb. Particularly,
sb and ~�b show differences of up to 1.5 ppm, revealing that
the coarse estimate of a 30% relative background error used
for the CTR30 run is by far too large. Also shown in Figure 6b
is the consistency diagnostics for a 10% relative background
error, which was assumed subsequently for the CTR10 run.
There is a very close agreement of ~�b and sb as well as of ~�o

and so up to about 50 hPa. Larger deviations of between ~�b

and sb up to 0.3 ppm occur above 50 hPa.
[42] Improved estimates of sb were then constructed by

inserting the mean value of diagnosed and specified back-
ground error standard deviations and recomputing the
analysis. This procedure was repeated until a satisfying

Figure 4. Diagnosed background error for different back-
ground error correlation length scales L (solid, L = 400 km;
dotted, L = 600 km; dashed, L = 800 km; dash‐dotted,
L = 1000 km). The line styles for different values of L
are also indicated in the box at the top left. All available
MIPAS data on 24 October 2003 were included in these
calculations.

Figure 5. Geolocation of the 135 MIPAS profiles (triangles) selected for the tuning of background error
covariances on 24 October 2003.
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consistency between specified and diagnosed background
error standard deviations was obtained (~�b ≈ sb) after three
to four iterations. In this study no formal convergence cri-
terion was applied. Development of such criteria as well as
automatization of the described tuning procedure for oper-
ational application is ongoing work.
[43] The final result of the tuning procedure is presented

in Figure 6c, and the values of tuned background error
standard deviations can be found in Table 2 (third column).
Compared to the untuned CTR30 (CTR10) setting, the
maximum difference between ~�b and sb shrank by a factor
of 30 (6) to about 0.05 ppm. This small inconsistency
between diagnosed and specified error standard deviations is

still present in the final tuning result, and the associated
analysis cost function value Jp

a = 0.55, which is 10% larger
than the expected value of 0.5, reflects this inconsistency. In
the first place this is certainly caused by the choice of the
relatively simple background error covariance model, which
does not allow for latitudinal variations of sb. Furthermore,
a closer inspection of the MIPAS data revealed that about
5% of the assimilated profiles show strong oscillations in the
region above approximately 20 hPa. An example is shown
in Figure 8. It can be speculated that these kind of oscilla-
tions are artifacts originating from the ESA retrieval algo-
rithm due to the fact that no regularization has been applied
[Raspollini et al., 2006]. If these profiles are sorted out
manually, the tuning result further improves (not shown)
and the associated Jp

a value reduces to 0.52. However, the
development of objective criteria for the decision to reject a
certain profile, which probably shows unphysical behavior
or not (i.e., stricter quality control criteria) is beyond the
scope of this study. Consequently, no additional selection of
MIPAS profiles took place for the subsequent assimilation
experiments.
[44] To check whether the tuned background error var-

iances remain valid for dates other than 24 October,
the tuning procedure was repeated for 27 October and
6 November. The differences found in the tuning results did
not exceed 0.04 ppm, which is within the range of the
aforementioned remaining inconsistency between ~�b and sb.
Therefore, it can be hoped that the background error var-
iances vary slowly enough to use the tuning result obtained
at a specific date for a period of a few weeks at least.
[45] Further, it has been verified that the tuning result does

not depend notably on the value of L used for the spin‐up
assimilation (21 to 23 October). To this end, the spin‐up was
repeated using L = 400 km, L = 800 km, L = 1000 km and
L = 1400 km, but the differences in diagnosed background
error variances ~�b relative to the L = 600 km setting were
found to be small (<0.025 ppm, not shown). At this point, it
is important to recognize the different impact of L on the
background field on one hand and on the tuning procedure
on the other hand: The latter has been shown to be sub-
stantial, with smaller background error estimates emerging
for larger values of L (see Figure 4). The model forecast
(background), however, seems to depend only weakly on
the exact value of L, as demonstrated by the small differ-
ences in the tuning result due to background fields obtained
with different settings of L in the preceding spin‐up
assimilation. This constitutes a first justification for the
strategy of tuning sb independently of L, as discussed above
in section 4.1. A more detailed evaluation of forecast skill
and its dependence on L is presented in section 4.7.

Figure 6. Covariance diagnostics using a subset of MIPAS
O3 profiles only, tuning experiment 1. Shown are the spec-
ified background errors sb (thin solid line), diagnosed back-
ground errors ~�b (thick solid line), specified observation
errors so (thin dashed line), and diagnosed observation
errors ~�o (thick dashed line) for (a) untuned background
error variances assuming a 30% relative background error,
(b) untuned background error variances assuming a 10%
relative background error, and (c) the final tuning result.
Line styles are also indicated in the box at the bottom right
of each plot.

Table 2. Values of Background Error Standard Deviations

Obtained With the Tuning Procedure and Increased Values Used

for Assimilation Over a 24 h Assimilation Window

Index i
Height
(km)

Final Tuning
Result si

b (ppm)
Values fsi

b Used for 24 h
Assimilation Window (ppm)

1 13.9 0.055 0.06875
2 20.2 0.23 0.2875
3 28.1 0.32 0.40
4 36.9 0.56 0.70
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4.3.2. Tuning Experiment 2
[46] The second tuning experiment has been conducted

considering a 5% pT error component included in R. As
shown in Figures 7a and 7b, the assumption of an 30% or 10%
relative background error leads, similar to experiment 1, to
large deviation between diagnosed and specified quantities.
Interestingly, it is possible to obtain a tuning result with a
remaining inconsistency < 0.05 ppm, which is not larger
than for tuning experiment 1 (Figure 7c). However, due to
the increased observation error margins, the diagnosed
background error is significantly smaller than the MIPAS
observation error above 60 hPa in this case.
[47] As a conclusion, it appears that, in practice, the

Desroziers et al. diagnostics allows for more than one
consistent specification of error covariances, or possibly a
range of consistent solutions. To decide which tuning result
is more realistic, additional diagnostic is necessary. For
example, it was found that the condition Jp

a = 0.5 cannot be
met with the 5% pT error added to R. Further, the forecast
skill did not improve significantly relative to the case where
a 30% background error is assumed (not shown). These
findings point toward the conclusion that the background

errors obtained in tuning experiment 2 are unrealistically
small.
[48] Finally, it must be noted, that the assumption of a

global 5% pT error is a simplification. In principle, it is
possible to calculate the pT error component for individual
profiles [see Raspollini et al., 2006], and a refinement of
background error estimates might be a possible outcome.
However, for this first evaluation of the SACADA BECM
formulation, it was decided not to consider the pT error
contribution to the total random error for the remainder of
this study. This can bee seen as a precautionary measure in
order to avoid an underestimation of the model forecast
(background) error.
4.3.3. Extension to a 24 h Assimilation Window
[49] The background error standard deviations sb derived

above are consistent for a short‐assimilation (“tuning”)
window of 6 h. It is assumed that the perfect model
assumption inherent to the strong constraint 4D‐var method
is valid to a reasonable degree over this short time span. If it
is intended to use a longer‐assimilation window of 24 h,
additional considerations are necessary: A weak constraint
4D‐var system [e.g., Trémolet, 2006] would, as it takes into
account the presence of model errors, assign less weight to
the model trajectory relative to the observations, thereby
avoiding that the optimal solution sticks too close to the
background. In a strong constraint data assimilation frame-
work the only possibility to give less weight to the model
trajectory is to increase the background error instead.
Therefore, it was decided to apply a multiplicative inflation
factor f to the tuned sb for use over a 24 h assimilation
window. In order to find a suitable value for f, some
experimentation was necessary: Assimilation runs over the
case study period with f = 1.10, f = 1.20, f = 1.30, and
finally f = 1.25 were conducted, and Jp

a was examined as
described in section 4.6. Fortunately, since the diagnostics
conducted to find an optimal correlation length scale L was

Figure 7. As in Figure 6, but for tuning experiment 2, with
a 5% contribution of systematic error sources added to R.

Figure 8. Example of one MIPAS profile (squares with
error bars, connected with thin solid line) showing oscilla-
tions at altitudes above approximately 20 hPa. The back-
ground and analysis are given by the thick dashed and
solid line, respectively. Line styles are also indicated in
the box at the bottom right.
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found to be not significantly influenced by relatively small
changes in background error specification, it was possible to
perform a preliminary diagnostic of L first. For L = 600 km,
which turned out to be apparently the most consistent choice
(see sections 4.5 and 4.7), a value of f = 1.25 was deter-
mined such that Jp

a
≈ 0.5. The final tuning result sb (6 h

tuning window) and the values used for subsequent assim-
ilation experiments fsb are listed in Table 2.

4.4. Diagnosed Analysis Error

[50] Given that B ≈ ~B and R ≈ ~R, a diagnosed analysis
error valid in observation space can be approximated based
on equation (3) by

~�a
i

� �2

¼
1

pi
dab
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i
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j
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j
� ya

j

� �
; ð12Þ

for the same subset of observations i as used in (10) and (11).
The analysis error calculated by means of (12) is shown
together with the diagnosed background and observation
errors in Figure 9. It should be emphasized, however, that
this approximation is valid only at the location of observa-
tions, as it estimates the diagonal elements of H~AHT. It
must not be misunderstood as an estimate of diagonal ele-
ments of A itself. In contrast to the BECM, where it is
acceptable to derive diagonal entries of ~B using H~BH

T

under the conditions discussed in the last paragraph of
section 2.1, the analysis error will generally be closer to the
background error (i.e., larger) in air parcels not influenced
directly (or not influenced at all) by observations. Therefore,
equation (12) cannot provide an analysis error estimate in
model grid space, as needed, e.g., for the purpose of cross‐
validating data from different sensors. Rather, (12) can be
considered as a lower limit of analysis error in model grid
space, and it can be concluded that the true analysis error
will be in between ~�a and ~�b.

4.5. Diagnostics and Tuning for Off‐Diagonal Elements
of B

[51] Based on equation (1), the off‐diagonal elements ~bij
of H~BHT can be estimated in analogy to (10) by

~bij ¼
1

pij

Xpij

i; j¼1

i 6¼j
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� yb

i

� �
yo
j
� yb

j

� �
; ð13Þ

for a subset of observations with pij members. Because
equation (13) refers to observation space, it can only be
expected to deliver useful information for the parameteri-
zation of matrix B in model space if the time difference
between pairs of observations i and j is kept as small as
possible. Therefore, only those pairs i, j have been included
into the calculation, which are not separated by more than
one model time step or 1200 seconds. This corresponds to
approximately 1/3 of an ENVISAT orbit or a maximum
spatial distance of about 13,500 km.
[52] In order to check the consistency of the correlation

length parameter L, a set of six assimilation experiments
with L = 200 km, L = 400 km, L = 600 km, L = 800 km, L =
1000 km, and L = 1400 km has been conducted, with the
diagonal elements of B kept fixed at the values derived in
section 4.3. Additionally, on three days (24 October to
26 October 2003) dedicated assimilation runs have been
performed using observations within the 6 h tuning window.
Based on these results, the off‐diagonal elements of H~BHT

have been evaluated by selecting pairs of observations in the
same model level and by applying (13). The results have
been normalized to correlation coefficients, accumulated
into bins of 550 km extent and plotted as bar diagrams as
shown in Figure 10 for model levels 15–19 (8.3–30 hPa,
results for L = 200 and L = 1400 km not shown) and in
Figure 11 for model levels 20–24 (30–96 hPa, results for L =
200 and L = 1400 km not shown). The bin size of 550 km
has been chosen to match the distance of MIPAS profiles
along the orbit track. The solid line is the Gaussian corre-
lation function

cij ¼
bij

a0
¼ exp �

r2

2L2

	 

; ð14Þ

with r being the great circle distance between grid point i
and j, and L the correlation length scale, which has actually
been employed during the assimilation procedure. The
normalizing parameters a0, the values of which are given in
Figures 10 and 11, are the diagnosed background variances
for each layer and each setting of L. The dashed line depicts
the same correlation function but with L replaced by its
diagnosed counterpart ~L, which was obtained by a least
squares fit to the data. It must be emphasized that the
parameters a0 differ from the diagnosed background error
variances (~�i

b)2 derived in section 4.3. This is due to the fact
that the diagnostic is performed on the full set of observa-
tions here. A thinning of measurements is not applicable, as
this would remove too much information about background
error correlations on short distances. As a result, the nor-
malizing variances a0 are smaller than the corresponding ~�b

obtained for the same model region in section 4.3. Also,
it can be observed that a0 decreases with increasing L.
This behavior is consistent with the findings presented in

Figure 9. Diagnosed analysis error in observation space ~�a

(dotted), diagnosed background error ~�b (solid), and the
diagnosed observation error ~�o (dashed) for the final tuning
result. Line styles are also indicated in the box at the bottom
right.
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section 4.3, namely the loss of diagnosed variance with
growing L (see Figure 4). For the purpose of gaining
information on the consistency of L, the relative change of
covariance with distance is important, and it is supposed
here that this information can be derived, if the individual
normalization a0 is taken into account for each setting of L.
[53] The results show, that L seems to be inconsistent with

~L for L = 400 km, L = 1000 km, and, to a lesser extent, for
L = 800 km. The closest match between the specified
correlation length scale L and its diagnosed counterpart ~L is
found for L = 600 km. Results for the other altitude ranges
look very similar, although for the upper model domain the
aforementioned small bias between observations and model
background hampers the applicability of the method. Fur-
ther, it must be mentioned that, due to the sampling of points
i, j along the satellite orbit, the zonal structure of background
error correlations cannot be estimated by means of this
technique. Therefore, any anisotropy in background error
correlations cannot be detected without accepting larger
time differences between pairs of observations.

4.6. Examination of c2 Diagnostics

[54] In Figure 12a time series of normalized analysis cost
function values Jp

a are shown for the period 24 October to
10 November 2003 for the six assimilation experiments,
employing correlation length scales L in the range between
200 and 1400 km. It can be seen, that the value of Jp

a is
highly sensitive to the specified correlation length scale. A
high Jp

a mean value is found for the short (L = 200 km)
length scale. A minimum mean value of 0.58 can be
observed for L = 400 km followed by an increase of Jp

a with
increasing correlation length scale up to a value of 0.83 for
L = 1400 km.
[55] It should be noted that the increase of normalized

analysis cost function values for very short correlation
length scales is somewhat unexpected at first glance. In fact,
it should be supposed that small values of L allow for a
closer fit to observations (eventually leading to an over-
fitting of measurements as L approaches zero). However,
this is only true in a 3D‐var context. In a 4D‐var system, a
degraded analysis obtained due to an unrealistic small

Figure 10. Tuning of the correlation length parameter L for model levels 15–19 (8.3–30 hPa). The bar
diagrams give the correlation calculated according to equation (13) for four assimilation experiments with
(a) L = 400 km, (b) L = 600 km, (c) L = 800 km, and (d) L = 1000 km. Data of three consecutive days
(24–26 October 2003) have been sampled. The solid lines represent the correlation function with the
prescribed length scale L (the length scale actually encoded in B), while the dashed lines show the
correlation functions with the diagnosed correlation length scale ~L, where ~L was obtained by a least
squares fit to the respective data.

Figure 11. As in Figure 10, but for model levels 20–24 (30–96 hPa).
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background error correlation directly affects the subsequent
model integration over the assimilation window. As a con-
sequence, observations are not as closely matched as it
would have been the case if the analysis were obtained with
a more realistic value of L. This is also the reason why the
tuning of background error variances was not performed
with L set to zero in this study, and a thinning of observa-
tions has been applied instead.
[56] The fact that the expected value of 0.5 is not met for

either of the specified values of L gave reason to closer

inspection of the data. It turned out, that at high southern
latitudes between 96 and 30 hPa the values of Jp

a exceed the
expected value by a factor of about 5 (Figure 12b). Inter-
estingly, this region contains the polar vortex, which was,
although already weakening, still present at this time of the
year 2003 (see Lahoz et al. [2006] for a comprehensive
description of the southern hemisphere polar vortex evolu-
tion in 2003). Modeled potential vorticity with its distinct
high values in magnitude southward of 60°S together with
corresponding ozone analyses can be found in ESB10
(Figure 8) for 23 October 2003 at the 55 hPa level.
[57] There are two possible reasons for the observed

inconsistency of error statistics in the Antarctic polar vortex
region:
[58] 1. The model skill might be lower within and at the

edge of the polar vortex due to insufficient model resolution,
numerical diffusion of the transport scheme, errors in
modeling the correct position of the vortex, or other reasons.
This is not reflected in the BECM model used in this study,
as a latitudinal variation of background error is not taken
into account.
[59] 2. MIPAS retrieval quality under polar vortex con-

ditions might be lower and error estimates of the observa-
tions could possibly be too optimistic. Also, the assumptions
made about systematic retrieval errors, as discussed in
section 2.1.2, may be violated in this region.
[60] As a comprehensive clarification of this issue is

beyond the scope of this paper, data from the Antarctic
region have been excluded from the analysis of Jp

a and also
Jp
f statistics, hereafter. It should be noted, that the described

inconsistency between the model and observations could
have been detected with the Desroziers et al. method, if the
diagnosis had been performed for individual latitude bands.
Due to the design of the tuning procedure (thinning of

Figure 12. (a) Normalized analysis cost function Jp
a for the

six assimilation experiments with L = 200 km (thin solid),
L = 400 km (solid), L = 600 km (dotted), L = 800 km (short
dashes), L = 1000 km (dash‐dotted), and L = 1400 km (long
dashes) over the period 24 October to 10 November 2003
(day of year 297–314) for the whole model domain. Line
styles and time averages for the different values of L are
indicated in the box at the bottom right. (b) Jp

a inside the
Antarctic region (90°S–60°S) for 221–96 hPa (model level
28–25, solid), 96–30 hPa (level 24–20, dotted), 30–8.3 hPa
(level 19–15, dashed), and 8.3–2.4 hPa (level 14–10, dash‐
dotted). Values are valid for L = 600 km but are similar
for other settings of L. Line styles and time averages for
each height range are indicated in the box at the top left.

Figure 13. Normalized analysis cost function Jp
a for the six

assimilation experiments with L = 200 km (thin solid), L =
400 km (solid), L = 600 km (dotted), L = 800 km (short
dashes), L = 1000 km (dash‐dotted), and L = 1400 km (long
dashes) over the period 24 October to 10 November 2003.
Profiles from latitudes between 50°S and 90°S have been
excluded. Line styles and time averages for each value of
L are indicated in the box at the bottom right.
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observations, short tuning window) it is not likely however,
that the tuning results obtained in section 4.3 have been
significantly influenced.
[61] A plot similar to Figure 12a, but with the contribution

of the domain 50°S–90°N to Jp
a only, is given in Figure 13.

The time evolution of all Jp
a graphs is very similar, but mean

values are lower now by about 15% with the value of
0.49 for L = 400 km being slightly below and the value 0.52
for L = 600 being slightly above 0.5.

4.7. Examination of Forecast Skill

[62] The forecast skill as measured by Jp
f (with lower

values indicating a better forecast) for the domain 50°S–90°N
is displayed in Figure 14. As expected, less skillful forecasts
are obtained with a very weak background error correlation
(L = 200 km). The forecast quality is lower for L = 400 km
at 9 out of 16 days, comparable to cases with larger settings
of L on 6 days, and slightly better on one day. There is no
significant difference between the forecast skill for the L =
600 km, L = 800 km and L = 1000 km settings. A further
extension of background error correlations seems to degrade
the forecast quality, as seen for the assimilation experiment
employing L = 1400 km. Although longer time series would
be necessary to gain a better statistical basis, it can be ten-
tatively concluded that the forecast skill is largely unaffected
by the choice of L over a broad range of values between 600
and 1000 km. In this situation it seems reasonable to select
the shortest background error correlation length scale, which
enables a skillful analysis and subsequent forecast. Also, the
findings obtained with the Desroziers et al. method point
toward the conclusion that the value L = 600 km can be
considered as the most consistent choice.
[63] The fact that the differences in forecast skill as dis-

played in Figure 14 are relatively small for L within a range
between 400 and 1400 km is an a posteriori justification for
separately tuning si

b and L: If the impact of L on the model
forecast were large, separate sets si,L

b for each value of L
had to be derived in order to account for the different quality
of the forecast (=background), before proceeding with the
analysis outlined in section 4.5.

5. Validation

[64] The performance of the assimilation system using the
optimized BECM parameterization compared to the untuned
(CTR30 and CTR10) configuration with respect to the c2

criterion and forecast skill is shown in Figures 15 and 16. It

Figure 14. Normalized background cost function Jp
f for the

six assimilation experiments with L = 200 km (thin solid),
L = 400 km (solid), L = 600 km (dotted), L = 800 km (short
dashes), L = 1000 km (dash‐dotted), and L = 1400 km (long
dashes) over the period 25 October to 10 November 2003.
Profiles from latitudes between 50°S and 90°S have been
excluded. Line styles and time averages for each value of
L are indicated in the box at the top left.

Figure 15. Normalized analysis cost function Jp
a for the

untuned (CTR30, dotted; CTR10, dashed) and tuned (solid)
assimilation system (24 October to 10 November 2003).
Profiles from latitudes between 50°S and 90°S have been
excluded. Time averages for each assimilation experiment
are indicated in the box at the top.

Figure 16. Normalized background cost function Jp
f for the

untuned (CTR30, dotted; CTR10, dashed) and tuned (solid)
assimilation system (25 October to 10 November 2003).
Profiles from latitudes between 50°S and 90°S have been
excluded. Time averages for each assimilation experiment
are indicated in the box at the top.
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is not surprising that the system employing the tuned BECM
better meets the expected analysis cost function value of 0.5
(Figure 15), as this criterion was partly used during the
tuning procedure (determination of the inflation factor f ).
More encouraging is the result, that the forecast skill,
measured by the background (forecast) cost function Jp

f,
improves, as demonstrated by the 6.7% reduction of Jp

f from
0.955 for CTR30 to 0.891 shown in Figure 16. It can be
noted that the number of 6.7% does not reflect the fact that
the lowest possible value of Jp

f is 0.5 (for an optimal forecast
Jp
f
≈ Jp

a
≈ 0.5). Therefore, the improvement observed in this

study corresponds to a 12% reduction relative to the possible
gain. Only a slight improvement (0.5%) in forecast skill is
observed relative to the CTR10 setting.
[65] The quality of analyses obtained with the tuned and

untuned system, has been further evaluated by comparison
with HALOE and SAGE II data. A total of 241 HALOE
profiles collected from 30 October to 7 November 2003 is
available for the case study period. About half of these
profiles (sunset events) are located in a latitude band

between 60°S and 80°S, while the sunrise events took place
between 25°N and 55°N. The bias and standard deviation of
HALOE observations with respect to MIPAS based analyses
(vertically interpolated to the location of HALOE profile
points) have been calculated for these two latitude bands.
The results presented in Figure 17 indicate that, relative to
the CTR30 assimilation run, there is a substantial reduction
of standard deviation between the 60 and the 2.4 hPa
pressure level for both latitude bands. The decrease is about
0.05 to 0.1 ppm over large parts of the profiles, reaching
values of 0.2 ppm in the uppermost model domain within
the northern latitude band. The corresponding percentage
decrease (not shown) is about 20% in the middle strato-
sphere. Relative to the CTR10 assimilation run the standard
deviation with respect to HALOE profiles is decreased
between 50 and 10 hPa in the southern and above 30 hPa in
the northern latitude band. Below there is no significant
difference between the CTR10 and the tuned BECM setting,
although in the northern latitude band, CTR10 performs
slightly better between 100 and 50 hPa. This is in line with

Figure 17. (a) Standard deviation and (b) bias of analyzed ozone with respect to HALOE observations
between 80°S and 60°S latitude (sunset scans). The analysis has been obtained by assimilating MIPAS
profiles with untuned (CTR30, dotted; CTR10, dashed) and tuned (solid) background error covariances.
The change relative to the CTR30 setting is given in the right section of each plot. (c) Standard deviation
and (d) bias of analyzed ozone with respect to HALOE observations between 25°N and 55°N latitude
(sunrise scans). These statistics include all available HALOE observations during the period 24 October
to 10 November 2003.
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the finding that the 10% relative background error leads to a
very good consistency in error statistics below 50 hPa
(compare Figure 6). The bias is less affected by the tuning
procedure, although a reduction can be observed at southern
latitudes.
[66] SAGE II data is available for the whole case study

period. The tangent point locations of SAGE II profiles vary
slowly in latitude, covering a range from 55°S to 35°N.
Standard deviation and bias of ozone analyses with respect
to the SAGE II retrievals are shown in Figure 18 for
southern midlatitudes (55°S to 30°S) and for tropical lati-
tudes (30°S to 30°N). A reduction of standard deviation as a
result of using the tuned background error covariances can
be observed for SAGE II midlatitude profiles. The standard
deviation profiles’ shape and magnitude is very similar to
the HALOE northern midlatitude profiles. For tropical
SAGE II profiles, an increase of standard deviation due to
the tuning of BECM parameters can be seen in the region
below ≈ 50 hPa. It was found that this is a consequence of
the relatively simple covariance setup used for this study,
which does not allow for latitudinal variation of background

errors. The Desroziers et al. diagnostics applied to data in
specific latitude ranges (not shown), confirms that the 10%
relative background error used for CTR10 performs better
(is more consistent) in the tropical region than the tuned sb

obtained as an average over all latitudes. The bias relative to
SAGE II profiles remains practically unaffected by the
tuning procedure.
[67] For further validation, there are 67 sonde ascents

from 29 locations available for the period 24 October to
10 November (excluding five ascents that did not reach a
minimum burst height of 20 hPa). Since there are only nine
ascents for southern extratropical stations, the analysis has
been focused on tropical and northern latitudes. The results
are shown in Figure 19. Generally, standard deviations are
larger compared to Figures 17 and 18. This can be explained
by the fact that ozone sondes offer a higher spatial resolution
than the remote sensing devices HALOE and SAGE II, even
after smoothing to the model grid with approximately 2 km
vertical grid spacing. Nevertheless, some common features
can be observed: In the tropics, a positive impact of the
optimized BECM is found only above the 30 hPa level,

Figure 18. (a) Standard deviation and (b) bias of analyzed ozone with respect to SAGE II observations
between 55°S and 30°S latitude. The analysis has been obtained by assimilating MIPAS profiles with
untuned (CTR30, dotted; CTR10, dashed) and tuned (solid) background error covariances. The change
relative to the CTR30 setting is given in the right section of each plot. (c) Standard deviation and (d) bias
of analyzed ozone with respect to SAGE II observations between 30°S and 30°N latitude. These statistics
include all SAGE II observations available during the period 24 October to 10 November 2003.
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while the untuned BECM appears to perform better below.
This effect, similar in magnitude, is also seen in the com-
parison with SAGE II data (see discussion above). A
reduction of standard deviation due to the use of the tuned
BECM is detected in the latitude range 30°N to 90°N above
the 50 hPa level, although this effect is slightly weaker than
the reduction seen in the HALOE and SAGE II validation
cases.

6. Discussion and Conclusions

[68] A set of a posteriori diagnostics in observation space,
which was devised by Desroziers et al. [2005], has been
applied for the first time in the context of atmospheric
chemistry data assimilation. A five‐parameter background
error covariance model for the 4D‐var assimilation system
SACADA was set up and iteratively optimized. The five
parameters have been chosen to be the (globally averaged)
ozone background error variances for four altitude ranges
and a background error correlation length scale. The tuning
has been performed by assimilating MIPAS ozone pro-
files provided by ESA for a period from 21 October to

10 November 2003. As the results depend to some degree
on the error characteristics of the assimilated data, it can be
expected that the optimized parameters will be slightly
different for other instruments.
[69] Control assimilation runs were performed with the

assumption that the ozone background error is a fixed
fraction of the ozone value. A coarse estimate of a 30%
ozone background error, and a more plausible but ad hoc
estimate of 10% were selected as control cases. The coarse
30% estimate was found to be by far too large, while the
10% estimates leads to a consistent specification of back-
ground and observation errors below 50 hPa but to
increasing inconsistency for higher altitudes. The optimized
background error variances were inferred to be of the same
order of magnitude as the mean MIPAS observation error
variances. A length scale of L = 600 km assuming a
Gaussian correlation function was found to be the optimal
setting for the SACADA system. In contrast to the large
impact of background error variances on forecast quality,
the forecasts skill appears to be only weakly dependent on
the precise value of L for a range of L = 400 to L = 1400 km.
It should be noted that observations providing less spatial

Figure 19. (a) Standard deviation and (b) bias of analyzed ozone with respect to ozone soundings at
tropical stations (30°S–30°N). The analysis has been obtained by assimilating MIPAS profiles with
untuned (CTR30, dotted; CTR10, dashed) and tuned (solid) background error covariances. The change
relative to the CTR30 setting is given in the right section of each plot. (c) Standard deviation and (d) bias
of analyzed ozone with respect to ozone sonde measurements in the latitude range 30°N–90°N.
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coverage than, for example, MIPAS profiles, cannot be used
to derive information on spatial background error correla-
tions with the Desroziers et al. method.
[70] The assimilation system performance was enhanced

considerably through the use of optimized BECM para-
meters compared to the control run using the 30% error
estimate. The forecast skill, which was defined as the
squared observation‐minus‐forecast differences weighted by
observation error, improved by 6.7%. A statistical validation
with HALOE and SAGE II data reveals, that the standard
deviation of the analyzed ozone field with respect to
HALOE and SAGE II is reduced by approximately 20%
between 60 and 2 hPa in the extratropics. For tropical lati-
tudes a similar improvement is found above the 30 hPa
level. However, the untuned BECM settings appear to be
superior in the tropical lower stratosphere and upper tro-
posphere region. Here, further improvement can be expected
by making the tuned variances and the correlation length
scale also dependent on latitude. Expectedly, the impact of
the tuned BECM compared to the 10% background error
setting is smaller, yet still positive. The validation with
ozone sonde profiles confirms the positive impact of the
improved background error covariances on stratospheric
ozone analyses. These findings underline the importance of
giving the appropriate weight to the background field in data
assimilation schemes.
[71] The Desroziers et al. diagnostic is easy to implement

and causes practically no additional computational cost.
However, the application of this method must be conducted
with care, as the diagnostic of background and observation
error variances can be hampered by misspecification of
spatial background error correlations, and, in a 4D‐var
context, the presence of model errors. Therefore, it is nec-
essary to perform the optimization of variances on a subset
of observations only (reducing the influence of the BECM’s
off‐diagonal elements) and with a shortened assimilation
window (reducing the influence of model errors).
[72] Further, it was found that a simultaneous tuning of

background and observation errors is not feasible, since the
Desroziers et al. method appears to be nonunique, that is, it
allows for a range of consistent background and observation
error specifications. Therefore, this study assumes that the
observation error variances provided with the MIPAS ozone
profiles are correct. For the region containing the Antarctic
polar vortex it was found that an unresolved inconsistency
in error statistics remains. This inconsistency may be caused
by the treatment of MIPAS retrieval error, which might be
not appropriate in this region, or by a lower model skill in
and at the edge of the vortex, which would not have been
reflected in the BECM setup used for this study.
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