000014051 001__ 14051
000014051 005__ 20230426083022.0
000014051 0247_ $$2DOI$$a10.1103/PhysRevB.83.024407
000014051 0247_ $$2WOS$$aWOS:000286751600006
000014051 0247_ $$2Handle$$a2128/10952
000014051 037__ $$aPreJuSER-14051
000014051 041__ $$aeng
000014051 082__ $$a530
000014051 084__ $$2WoS$$aPhysics, Condensed Matter
000014051 1001_ $$0P:(DE-HGF)0$$aAl-Zubi, A.$$b0
000014051 245__ $$aMagnetism of 3d transition-metal monolayers on Rh(100)
000014051 260__ $$aCollege Park, Md.$$bAPS$$c2011
000014051 300__ $$a024407
000014051 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000014051 3367_ $$2DataCite$$aOutput Types/Journal article
000014051 3367_ $$00$$2EndNote$$aJournal Article
000014051 3367_ $$2BibTeX$$aARTICLE
000014051 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000014051 3367_ $$2DRIVER$$aarticle
000014051 440_0 $$04919$$aPhysical Review B$$v83$$x1098-0121$$y2
000014051 500__ $$3POF3_Assignment on 2016-02-29
000014051 500__ $$aWe acknowledge valuable discussions with J. Kudrnovsky and A. Lehnert, and the financial support of the ESF EUROCORES Programme SONS under Contract No. ERAS-CT-2003-980409.
000014051 520__ $$aWe employ the full-potential linearized augmented plane-wave method to report a systematic density-functional theory study of the magnetic properties of the 3d transition-metal (V, Cr, Mn, Fe, Co, and Ni) monolayers deposited on the Rh(100) substrate. We find that all monolayer films are magnetic. The size of the local magnetic moments across the transition-metal series follows Hund's rule with a maximum magnetic moment of 3.77 mu(B) for Mn. The largest induced magnetic moment of about 0.46 mu(B) was found for Rh atoms adjacent to the Co film. When relaxations are included, we predict a ferromagnetic (FM) ground state for V, Co, and Ni, while Cr, Mn, and Fe favor a c(2 x 2) antiferromagnetic (AFM) state, a checkerboard arrangement of up and down magnetic moments. The magnetic anisotropy energies of these ultrathin magnetic films are calculated for the FM and AFM states. With the exception of Cr, the easy axis of the magnetization is predicted to be in the film plane. Rough estimates of the ordering temperatures are given. To gain an understanding of the c(2 x 2) AFM state of Fe/Rh(100), we analyze this result with respect to the trends of the magnetic order of 3d monolayers on other 4d substrates, such as Pd(100) and Ag(100).
000014051 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000014051 542__ $$2Crossref$$i2011-01-24$$uhttp://link.aps.org/licenses/aps-default-license
000014051 588__ $$aDataset connected to Web of Science
000014051 650_7 $$2WoSType$$aJ
000014051 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b1$$uFZJ
000014051 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b2$$uFZJ
000014051 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.83.024407$$bAmerican Physical Society (APS)$$d2011-01-24$$n2$$p024407$$tPhysical Review B$$v83$$x1098-0121$$y2011
000014051 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.83.024407$$gVol. 83, p. 024407$$n2$$p024407$$q83<024407$$tPhysical review / B$$v83$$x1098-0121$$y2011
000014051 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.83.024407
000014051 8564_ $$uhttps://juser.fz-juelich.de/record/14051/files/PhysRevB.83.024407.pdf$$yOpenAccess
000014051 8564_ $$uhttps://juser.fz-juelich.de/record/14051/files/PhysRevB.83.024407.gif?subformat=icon$$xicon$$yOpenAccess
000014051 8564_ $$uhttps://juser.fz-juelich.de/record/14051/files/PhysRevB.83.024407.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000014051 8564_ $$uhttps://juser.fz-juelich.de/record/14051/files/PhysRevB.83.024407.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000014051 8564_ $$uhttps://juser.fz-juelich.de/record/14051/files/PhysRevB.83.024407.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000014051 909CO $$ooai:juser.fz-juelich.de:14051$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000014051 9141_ $$y2011
000014051 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000014051 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000014051 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000014051 9131_ $$0G:(DE-Juel1)FUEK412$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000014051 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000014051 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000014051 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000014051 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000014051 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x3
000014051 970__ $$aVDB:(DE-Juel1)125887
000014051 9801_ $$aFullTexts
000014051 980__ $$aVDB
000014051 980__ $$aConvertedRecord
000014051 980__ $$ajournal
000014051 980__ $$aI:(DE-Juel1)PGI-1-20110106
000014051 980__ $$aI:(DE-Juel1)IAS-1-20090406
000014051 980__ $$aI:(DE-82)080009_20140620
000014051 980__ $$aI:(DE-Juel1)VDB1045
000014051 980__ $$aUNRESTRICTED
000014051 981__ $$aI:(DE-Juel1)IAS-1-20090406
000014051 981__ $$aI:(DE-Juel1)VDB1045
000014051 981__ $$aI:(DE-Juel1)VDB881
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0304-8853(91)90837-Z
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/11/48/302
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/7/8/013
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/9/6/018
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.47.16441
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.024452
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.45.7532
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.16192
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.195426
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.087204
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.027201
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.019901
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2007.04.125
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.064405
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.167203
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.46.12888
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.134.A1547
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.46.2864
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmmm.2006.10.235
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(93)91000-F
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/5/40/006
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.054417
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.73.2550
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physb.2004.06.043
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.037205
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.147203
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.14429
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.155428
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.24.864
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.45.13293
000014051 999C5 $$1A. R. Mackintosh$$2Crossref$$oA. R. Mackintosh Electrons at the Fermi Surface 1980$$tElectrons at the Fermi Surface$$y1980
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.48.1786
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.46.4816
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0038-1098(97)10176-4
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.11493
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.575170
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.37.10380
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.214432
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.60.1077
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01567215
000014051 999C5 $$1S. Blügel$$2Crossref$$oS. Blügel Handbook of Magnetism and Advanced Magnetic Materials 2007$$tHandbook of Magnetism and Advanced Magnetic Materials$$y2007
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0304-8853(99)00407-2
000014051 999C5 $$1P. J. Jensen$$2Crossref$$9-- missing cx lookup --$$a10.12693/APhysPolA.92.427$$p427 -$$tActa Phys. Pol. A$$v92$$y1997
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.43.11527
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0304-8853(92)91264-T
000014051 999C5 $$1B. Kaplan$$2Crossref$$oB. Kaplan 1999$$y1999
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.187203
000014051 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.094411