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Kurzfassung

Bei Kernfusionsanlagen ist die Innenwand, die direkten Kontakt mit dem Plasma hat,
hohen Energieflüssen ausgesetzt. Die stärksten Belastungen treten dabei im Bereich des
Divertors im unteren Teil der Plasmakammer auf, der kontinuierlichen Wärmelasten
mit Leistungsdichten von mehreren MW·m−2 sowie transienten Belastungen widerste-
hen muss. Letztere sind sehr kurzzeitig (Millisekunden- und Submillisekundenbereich),
deponieren aber höchere Leistungsdichten von einigen GW·m−2. Die Anforderungen an
Materialien, das diesen extremen Bedingungen widerstehen kann, führte zur Wahl von
Wolfram, das die Folgenden vorteilhaften Eigenschaften besitzt: eine hohe Schmelztem-
peratur, gute thermische Leitfähigkeit, hohe Widerstandsfähigkeit gegen physikalis-
ches Sputtern, geringe Wärmeausdehnung und niedrige Aktivierbarkeit. Diese Eigen-
schaften machen es zu einem interessanten und vielversprechenden Kandidat für die
Auskleidung der Divertoren zukünftiger Fusionsanlagen wie ITER und DEMO.

Für den DEMO Divertor wurde eine konzeptionelle Studie an heliumgekühlten Wand-
komponenten aus Wolfram durchgeführt. Dieses Konzept wurde umgesetzt und unter
DEMO relevanten zyklischen Wärmebelastungen getestet. Die anschließende Unter-
suchung der Komponenten vor und nach der thermischen Belastung mittels Metallo-
graphie ermöglichte es, die Mechanismen, die zum Versagen der Komponenten führten,
zu bestimmen. Es wurde unter anderem gezeigt, dass die Wolframsorte und die damit
verbundene Rissstruktur einen Einfluss auf das Verhalten der Wandkomponenten unter
hohen Wärmeflüssen hatte.

Eine Eignungsstudie sollte unter besonderer Berücksichtigung der auftretenden Riss-
bildung zeigen, wie sich bestimmte Wolframsorten unter fusionsrelevanten kontinuier-
lichen Wärmelasten verhalten. Insgesamt wurden sieben kommerziell verfügbare Wol-
framsorten von zwei Herstellern untersucht. Da das thermische Verhalten der Mate-
rialien stark mit deren Mikrostruktur verknüpft ist, wurden im Rahmen dieser Studie
verschiedene Materialgeometrien und Herstellungsverfahren miteinander verglichen.
Dies beinhaltete eine selbst entworfene, aktivgekühlte Komponente, die auf dem Flach-
probendesign basierte, um alle Materialien denselben Oberflächentemperaturen zu be-
lasten. Die kontinuierlichen Wärmelasten mit überlagerten transienten Wärmelasten
wurden mit einem Elektronenstrahl, der die Komponenten mit Frequenzen in kHz
Bereich scannte, auf die Komponenten aufgebracht. In den Versuchen wurde die Leis-
tungsdichte, die Oberflächentemperatur der Proben und die aufgebrachten Zyklen-
zahlen variiert. Der Temperaturgrenzwert für Rissbildung konnte zwischen 1000 und
1900◦C lokalisiert werden. Sobald Rissbildung einsetzte, hatte die Oberflächentem-
peratur keinen Einfluss mehr auf das Rissnetzwerk im belasteten Bereich. Allerdings
wuchs die Risstiefe mit der Zyklenzahl an, war aber immer auf einen oberflächennahen
Bereich von ca. 100 μm begrenzt.
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Ein Nachteil von Wolfram ist sein sprödes Verhalten bei Raumtemperatur, das eine
Verarbeitung erschwert und geeignete Bearbeitungmethoden erfordert. Die Unter-
suchung der heliumgekühlten Wandkomponenten aus Wolfram zeigte Risse in den
maschinell bearbeiteten Oberflächen. Um das Verhalten der Wandkomponenten besser
zu verstehen, war es notwendig, den Einfluss der Oberflächenvorschädigung auf die
Gesamtschädigung unter starken Wärmelasten zu untersuchen. Im Rahmen der Eig-
nungstests wurden daher vorgeschädigte und nicht vorgeschädigte Proben starken Wär-
meflüssen ausgesetzt. Vorgeschädigte Oberflächen erhielt man durch Oberflächenbear-
beitung mittels Funkenerosion (electric discharge machining) und defektfreie Oberflä-
chen durch Polieren. Nach thermischer Beanspruchung zeigte sich, dass die Vorschädi-
gung in den höchsten Rissdichten resultierte. Die Risstiefe war hingegen unabhängig
von der Zyklenzahl ganz im Gegensatz zu den Rissen, die in den polierten Oberflächen
auftraten.
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Abstract

In nuclear fusion devices the surfaces directly facing the plasma are irradiated with
high energy fluxes. The most intense loads are deposited on the divertor located at
the bottom of the plasma chamber, which has to withstand continuous heat loads
with a power density of several MW·m−2 as well as transient events. These are much
shorter (in the millisecond and sub-millisecond regime) but deposit a higher power
densities of a few GW·m−2. The search for materials that can survive to those severe
loading conditions led to the choice of tungsten which possesses advantageous attributes
such as a high melting point, high thermal conductivity, low thermal expansion and
an acceptable activation rate. These properties made it an attractive and promising
candidate as armor material for divertors of future fusion devices such as ITER and
DEMO.

For the DEMO divertor, conceptual studies on helium-cooled tungsten plasma-facing
components were performed. The concept was realized and tested under DEMO specific
cyclic thermal loads. The examination of the plasma-facing components by microstruc-
tural analyses before and after thermal loading enabled to determine the mechanisms
for components failure. Among others, it clearly showed the impact of the tungsten
grade and the thermal stress induced crack formation on the performance of the armor
material and in general of the plasma-facing component under high heat loads.

A tungsten qualification program was launched to study the behaviour of various tung-
sten grades, in particular the crack formation, under fusion relevant steady-state ther-
mal loads. In total, seven commercially available materials from two industrial sup-
pliers were investigated. As the material’s thermal response is strongly related to its
microstructure, this program comprised different material geometries and manufactur-
ing technologies. It also included the utilization of an actively cooled specimen holder
which has been designed to perform sophisticated material tests at different surface
temperatures. The steady-state thermal loading with superimposed transient thermal
loading was induced by high frequency scanning of the electron beam. The steady-state
thermal loading was performed with different power densities, surface temperatures and
cycle numbers. The cracking threshold was investigated in a temperature range of 1000
to 1900◦C. Once cracks occurred, the surface temperature had no impact on the crack
network of the loaded surface. The cracks grew in depth with increasing the cycle
number. However, under all loading conditions, crack depths were still limited in a
shallow region, namely below 100 μm.

One disadvantage of tungsten is its high brittleness at room temperature which makes
the manufacturing of tungsten parts challenging as it requires suitable machining tech-
niques. The examination of the helium-cooled tungsten plasma-facing components
revealed cracks in as-machined surfaces. For a better understanding of the perfor-
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mance of plasma-facing components it was necessary to estimate the impact of pre-
cracked surfaces on the components’ degradation under high heat fluxes. Therefore,
in the frame of the tungsten qualification program, specimens with defect-free and
pre-cracked surfaces were exposed to high heat fluxes. Surface processing by electric
discharge machining (EDM) led to pre-cracked surfaces and defect-free surfaces were
achieved by polishing. EDM-pre-cracking resulted in a high crack density consisting
of inter- and intra-granular cracks, which did not change after thermal loading. Even
more, the cracks did not grow with the cycle number in contrast to thermo-mechanical
induced cracks on polished surfaces which occurred at lower crack density.
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1 Introduction

1.1 Nuclear fusion concepts

Nuclear fusion is the physical process describing the joint of at least two atomic nuclei to

form a heavier nucleus. Fusion reactions are accompanied by the release of huge energy

quantities when the average mass of the nucleons involved in the process decreases

between the initial and the final state. The missing mass, called the mass defect, is

a measure of the nuclear binding energy which holds the nucleus together in spite of

the electromagnetic force tending to repel the charged particles. This binding energy

can be calculated from Einstein’s equation E = m·c2. Nuclei fuse with a yield of

energy when the binding energy of the formed nucleus is less than that of nickel (62Ni)

at the peak of the binding energy curve because the nuclear particles will be more

tightly bound than they were in the lighter nuclei (figure 1.1) [1]. The decrease in mass

Figure 1.1. Average binding energy per nucleon against mass number of the
strongest bound nucleons [1].

comes off in the form of kinetic energy carried by the end products and is equal to the

difference between the binding energies of the fuel and the fusion products. The fusion

of elements more massive than Ni would soak up energy rather than deliver it.
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The nuclear force which binds nucleons together dominates at distances of about a

few nucleon radii whereas the competing electromagnetic force dominates at longer

distances. It is highly unlikely that two positive nuclei will approach each other close

enough to undergo a fusion reaction unless they have an energy sufficient to overcome

the Coulomb barrier. Typically, an average kinetic energy of at least 104 eV is necessary

to enable fusion reactions. This explains why the centre of a star must be hot for the

fuel to burn. In the sun, fusion proceeds at temperatures around 1.5·107 K. At such

temperatures the atoms ionise (the electrons are stripped of the nuclei) forming a

high-energy state of matter called plasma.

The so-called cross section σ [barn] characterises in a quantitative form the probability

that a pair of nuclei cross the Coulomb barrier, i.e. undergo nuclear fusion. The

cross section was measured for several fusion reactions over a wide range of particle

energies. The largest values were obtained in the reaction between deuterium (D)

and tritium (T), and this at even lower temperatures than those of the other fusion

reactions (figure 1.2).

Figure 1.2. Experimentally determined cross sections for the the deuterium-
tritium (D-T), deuterium-3He (D-3He), and deuterium-deuterium (D-D) fusion
reactions as a function of the deuterium average kinetic energy KD = 1

2
mDv

2
D [2].

The large amount of released energy per fusion reaction led to the idea of using con-

trolled fusion for a power plant. The most efficient reaction to utilise fusion on earth is

the D-T reaction because it has the lowest necessary average kinetic energy for starting

fusion reactions, the highest cross section up to a few hundred keV and a high energy

yield. It generates a helium (He) nucleus and a free neutron (n) and releases 17.6

MeV binding energy apportioned according to the mass ratio (figure 1.3). Some other

possible reactions for controlled fusion are:

D + D → 3He (0.82 MeV) + n (2.45 MeV) (1.1)

D + D → T (1.01 MeV) + H (3.02 MeV) (1.2)

D + 3He → 4He (3.6 MeV) + H (14.7 MeV) (1.3)

It is also expected to manage the D-D reaction in the future since it has some advantages

with respect to irradiation processes and absence of tritium. One concern which will
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Figure 1.3. The deuterium-tritium fusion. Deuterium and tritium form an
intermediate state 5He with a half-life time of 0.6 MeV (∼5.5·10−22 s) [3]. It decays
into a stable 4He nucleus and a free neutron with kinetic energies of 3.5 MeV and
14.1 MeV respectively.

still remain is the radiation of energetic neutrons that will activate the materials in

fusion devices. Nevertheless, if low-activation materials are utilised, the most active

wastes created by fusion will need to be confined a few hundred years only compared

to millions of years for wastes created by nuclear fission. Fusion is thus said to be free

of long-term wastes. Furthermore, there would be no direct contribution to greenhouse

gases or acidic emissions during the nuclear fusion reactions. Therefore, nuclear fusion

offers an energy-conversion process with abundant resources and major environmental

advantages.

The fuel ressources for controlled fusion are available in great quantities. Deuterium

is abundant as it can be extracted from all forms of water (10 g of deuterium can be

extracted from 500 l of water). Tritium, not available on Earth in sufficient amounts

due to its high decay rate (it has a radioactive half-life of about 12.5 years), is planned to

be breeded in-situ in the fusion device by bombarding a lithium wall with the neutrons

from the deuterium-tritium reaction itself:

6Li + n → 4He (2.05 MeV) + T (2.73 MeV) (1.4)
7Li + n → 4He + T + n− 2.47 MeV (1.5)

In stars, the tendency of the plasma to disperse and therefore to cool down is bal-

anced out by the gravitational force. For controlled fusion, the problem arises how to

prevent the plasma from dispersing and touching any cold matter, possibly damaging

its environment and eventually loosing its kinetic energy. Practical efforts to harness

fusion energy involve two approaches: inertial and magnetic confinement. Within the

international fusion community, the magnetic confinement is nowadays the one per-

ceived as being able to provide successful results faster. The two strategies for inertial

confinement are laser fusion and ion-beam fusion. Directed onto a tiny fuel pellet

(for example a D-T mass), the energy influx evaporates the outer layer of the pellet,

producing energetic collisions against the remainder of the pellet, pushing it inward.

The shock waves compress the inner core to densities 103 to 104 times greater than
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normal by generating a pressure as high as 1017 Pa for periods as short as 10−9 s. At

maximum compression of the fuel, the energy in converging shock waves is sufficient to

heat the very centre of the fuel to temperatures high enough to induce fusion reactions.

While the inertial confinement strategy tends to fuse nuclei so fast that they do not

have time to move apart, the magnetic confinement seeks to extend the time that ions

spend close together by trapping the plasma within magnetic fields. The charged par-

ticles of the plasma are forced into circular and helical orbits around the magnetic field

lines, thereby confining the particles. On the other hand, they are able to move freely

both along and across the magnetic lines. In a suitably shaped magnetic field cage it is

therefore possible to confine a plasma and keep it perpetually in looping paths which

do not touch the wall.

However, when confined magnetically, the plasma is continuously losing energy due

to particle transport over the plasma boundary and radiation, namely Bremsstrahlung

radiation) related to collisions between free electrons and ions (Coulomb collisions), line

radiation related to collisions between free electrons and atoms or impurities scratched

off from the inner wall of the plasma chamber, and synchrotron radiation related to the

motion of charged particles in a magnetic field. All plasma’s energy losses (Ploss) have

to be balanced by the energy sources. The main energy source comes from the alpha

particles (He nuclei) which transfer their energy to the plasma by collision (Palpha). To

heat the fuel, additional energy is supplied by an auxiliary heating system (Pheat). The

energy balance of the plasma is in equilibrium when the energy sources feeding the

plasma compensate the energy losses cooling it down:

Ploss = Palpha + Pheat

The total power produced by the D-T fusion reaction Pfus is divided between the

products of the reaction, the alpha particles and the neutrons:

Pfus = Palpha + Pneut

The efficiency of a nuclear fusion reactor can be characterised by the factor Q, which

is the ratio of the fusion power to the input power required to heat the fuels:

Q =
Pfus

Pheat

The situation corresponding to Pfus = Pheat (Q = 1) is called break-even. As a D-T

plasma is heated to thermonuclear conditions, the alpha particle heating provides an

increasing fraction of the total heating. When a point is reached where the energy

losses are completely balanced by the alpha particle heating (Ploss = Palpha) the ex-

ternally supplied power can be removed (Pheat = 0) and the plasma temperature is

sustained by internal heating. The situation corresponding to Pheat = 0 (Q → ∞) is

called ignition. By putting the plasma power balance into terms of practical plasma

physical parameters, namely the plasma temperature (T ), ion density (n) and energy
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confinement time (τE), the conditions for ignition are met when:

nτET ≥ 3 · 1021 keV · s ·m−3 (1.6)

This product is called the fusion (or triple) product derived from the so-called Lawson

Criterion. In case of a D-T plasma, ignition would be reached for example by n = 1020

m−3, T = 10 keV and τE > 3 s. The japanese tokamak JT-60U achieved the highest

value of triple product up to now (2010): 1.53·1021 keV·s·m−3 [4].

1.2 Magnetic confinement fusion devices

There are two main types of magnetic confinement device: tokamak and stellarator.

A tokamak is a toroidal (doughnut-shaped) chamber with magnetic coils. The plasma

is confined in the shape of a torus by means of superposed magnetic fields: a toroidal

magnetic field externally generated by toroidal field coils and a poloidal field generated

by electric currents flowing within the plasma. The resulting magnetic lines of force

are helixes that spiral around the torus to minimize particle leakage. A third, poloidal

field generated by vertical field coils, fixes the position of the current in the plasma

(figure 1.4). The plasma current is induced by a transformer and increases continuously

Figure 1.4. Scheme of the magnetic circuits of a tokamak [5].

for a limited time. The transformer must be “discharged” frequently and the current

started up afresh. This is why a tokamak does not work in continuous but in pulsed

mode. In a stellarator the magnetic cage is produced with a single coil system without a

longitudinal net-current in the plasma (without a transformer). This makes stellarators

suitable for continuous operation in opposition to tokamaks. In order to achieve steady

state operation in a future tokamak power plant, investigations are being conducted on

methods of generating current in continuous mode, e.g. using high-frequency waves.

Various magnetic confinement devices were designed among which the tokamak is the

most highly developed.
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The magnetic configuration of a tokamak confines individual particles, namely ions and

electrons. This means that the charged particles which does not interact with charges

and currents generated by other particles follows a trajectory that stays close to the

toroidal magnetic surface. However, the particles undergo other phenomena resulting

in more complex transport mechanisms. The Coulomb collisions between particles

make them deviate from their initial trajectory and lead to a transport of matter and

heat transverse to the magnetic field lines. Additionally, the plasma turbulence driven

largely by the ion temperature gradient (hot plasma at the center, colder at the edge)

produces electric and magnetic field fluctuations that cause random perturbations in

the guiding center orbits of the particles. The randomness of the fluctuations leads

to a collision-like transport of particles and heat. The Coulomb collisions and the

plasma turbulence are two mechanisms by which the particles diffuse from the discharge

core towards the outside, giving rise to a confinement loss. The particles end up by

leaving the magnetic trap and encounter the surrounding wall of the plasma vessel.

The high energy of the incident particles may overcome the binding energy of the

wall atoms which are then ejected, eventually entering and contaminating the plasma.

Unlike light hydrogen atoms, the heavy atoms (with a high atomic number Z) of the

wall element are not completely ionised even at the high fusion temperatures. The

higher the atomic number of these impurities, the more electrons are still bound to

the atom core. Electron collisions give rise to an excitation of the bound electrons

and the deexcitation of the excited electron level produces a photon that escapes from

the plasma. Therefore, the impurities make the plasma electron population to loose

energy during each deexcitation by radiation. In this way, the impurities cool down

the plasma, rarefy it, and thus reduce the fusion power.

In order to reduce the fraction of impurities in the plasma core as much as possible,

a special magnetic field configuration tends to exclude the region where the so-called

plasma-wall interaction [6] takes place: this is the divertor magnetic configuration

(figure 1.5). The core plasma is characterised by closed field lines whereas the edge

field lines are open and directed towards a solid obstacle, the so-called divertor. The

border magnetic surface between the two zones is called Last Closed Magnetic Surface

(LCMF) or separatrix and the region of open field lines is called the Scrape-Off Layer

(SOL). The flow of particles and heat leaving the plasma by diffusion is guided by

following the open field lines towards the divertor which is situated relatively far away

from the central plasma. After interaction, the potential impurities are thus more likely

to be ionised in the SOL, swept by it and collected by the divertor plates. They then

remain in a closed circuit without interfering with the central plasma. It was while

testing this new configuration that the improved confinement H-mode was discovered

on the German machine ASDEX during the eighties, which definitively ensured the

success of this system. The largest present tokamaks, like JET and JT-60U, are fitted

with this type of device.

The next important step on the road to nuclear fusion power plants, ITER [8, 9],

will be based on the divertor magnetic configuration as well. ITER is a large-scale



Magnetic confinement fusion devices 7

Figure 1.5. Scheme of the poloidal cross section of a tokamak equipped with the
divertor configuration [7]. The diffusing particles are guided along the magnetic
field lines (grey arrows in the orange field) to a remote location away from the
plasma core where they are intercepted by the divertor.

scientific experiment intended to prove the viability of fusion as an energy source (i.e.

producing more power than it consumes) and to collect data and technologies necessary

for the design and the operation of the first electricity-producing fusion power plant

[10]. For 50 MW of input power, 500 MW of fusion (or output) power (Q = 10) will be

produced continuously for at least 400 seconds [11, 12]. In comparison, JET succeeded

in generating 70 % of input power with a record fusion power of 16 MW. As seen in

existing tokamaks the confinement time increases with the major radius of the machine

and so does the tokamak performance. Therefore, to achieve the high fusion power

foreseen in ITER, it is necessary to increase the size of the tokamak. Consequently,

ITER will be a superconducting tokamak of a size yet unequalled with a major radius

two times larger than that of JET (∼6 m compared to ∼3 m) (figure 1.6). Launched as

a bold proposition for international collaboration in 1985 the ITER Agreement includes

the European Union (EU), China, India, Japan, Korea, Russia and the United States

(US)

Upon the expected success of ITER, a demonstration fusion reactor, DEMO, will be

built [15]. DEMO will resemble a commercial fusion power plant as closely as possible.

Most of the technologies developed for ITER will be relevant for DEMO. As ITER is

already a reactor class machine only a few but very important technological develop-

ments will be missing for DEMO to utilize all technologies required in a commercial

device. DEMO will demonstrate the large scale production of electrical power (whereas
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Figure 1.6. Cutaways of tokamak devices JET (left side) and ITER (latin for
“the way”) [13, 14]. JET is the biggest tokamak in the world up to now. The
construction of ITER started January 2007 and the first plasma is scheduled in
2019.

ITER as well as earlier experimental fusion devices will merely dissipate the thermal

power they produce into the atmosphere as steam). DEMO is designed to produce at

least four times the ITER fusion power continuously (2000 to hopefully 4000 MW of

thermal output), thus reaching a level of power production on the scale of a modern

electric power plant. DEMO’s goal is to produce 25 times as much power as is required

for the breakeven (Q = 25). A conceptual design for such a machine could be com-

pleted in 2017. DEMO could start operation in the 2030s and put fusion power into

the grid as early as 2040.

1.3 Energy deposition on in-vessel walls

The magnetic field confining the plasma occupies the entire volume of the plasma ves-

sel. Consequently, the plasma also propagates till it touches the vessel wall, which

absorbs at the areas of contact, apart from the radiation, the entire energy transported

by the plasma particles. Due to the shape of the magnetic lines in the divertor con-

figuration (figure 1.5) the plasma energy is not deposited homogeneously all over the

vessel components during tokamak operation. Although the highest heat load is con-

centrated on the divertor, the so-called first wall (the part of ITER coloured in yellow

in figure 1.6) also absorbs a fraction of the heat flux. For example, the highest heat

loads in ITER during normal (quasi-stationary) plasma operation are expected to be
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around 0.5 MW·m−2 on the first wall and up to 10 MW·m−2 on the divertor [16].

On top of the steady state heat loads another type of loads, more intense, exists. Once

a plasma equilibrium is reached (when the Lorentz force balances the pressure gradient

force of the plasma, which tries to expand like a gas) plasma instabilities arise. These

instabilities are classified as transient thermal loads. During transient events a large

amount of energy with densities up to several MJ·m−2 is deposited in extremely short

time periods (in the ms range) on local surface areas [17]. There are three main classes

of instabilities, each with specific energy densities, durations and occurrences: the edge

localized modes (ELMs), the plasma disruptions, and the vertical displacement events

(VDEs) (figure 1.7).

Figure 1.7. Plasma induced thermal loads on divertor surfaces in ITER [18].
The quasi-stationary plasma operation is associated with periodic edge localized
modes. In addition, off-normal events (plasma disruptions and vertical displace-
ment events) occur at random times.

ELMs are instabilities occurring in short periodic bursts during the H-mode operation

in divertor tokamaks [19]. The H-mode is a high confinement regime that develops when

a tokamak plasma is heated above a characteristic power threshold. It is characterised

by a steep pressure gradient at the plasma edge just inside the separatrix. The pressure

gradient rises to a high level until an instability, the ELM, prevents the pressure build-

up by ejecting energy and particles into the divertor [20]. Unlike disruptions, ELMs

lead to a partial confinement loss. ELMs are classified into three types [21]. The type I

ELMs are short (0.2 to 0.5 ms) but intense outbursts that reach power densities up to

1 GW·m−2, thus depositing energy densities of ∼0.5 MJ·m−2 [22, 23]. They repeat with

a frequency of several Hz and are also called “giant” ELMs. The repetition frequency

increases with increasing the plasma heating power. They cause a sudden loss of up
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to 10-15 % of the plasma stored energy in a few milliseconds. The type II ELMs are

weaker than type I ELMs and have a higher frequency up to several thousands Hz.

They are also called “grassy” ELMs [24]. The type III ELMs are characterised by

weak and frequent outbursts. As their repetition frequency decreases with increasing

plasma heating power,+ those ELMs disappear at some point. They are also called

“small” ELMs. A single ELM does not cause significant damage in the components of

the wall. However, due to their high frequency of occurrence (since a large number of

ELMs, ≥1000, are expected in each discharge [23]) ELMs may amount to more than

1 million of events in ITER (during the expected 3000 pulses, each with a duration of

400 s).

A plasma disruption is a sudden breakdown of the plasma current caused by instabili-

ties in the spatial confinement of the plasma. The process of plasma disruption can be

described in three classical phases. Plasma disruptions typically start with a precursor

phase during which distortions of the shape of the magnetic field occur. These distor-

tions result in the destruction of the internal magnetic surfaces, which leads to a rapid

loss of the plasma energy called thermal quench. The latter is followed by a current

quench, a rapid decay of the plasma current. Each plasma disruption is expected to

deposit an energy density of 5 to 20 MJ·m−2 in a pulse duration of 0.1 to 5 ms (a

power density of 1 to 10 GW·m−2) on the divertor plates and to occur in less than

10 % of operational cycles [25]. Plasma disruptions result in rapid plasma heat loss

and termination of the discharge.

VDEs are instabilities during which the whole plasma moves vertically away from its

equilibrium position [26]. High elongation plasmas (i.e. high ratio of the plasma cross-

sectional height to its cross-sectional width such as those obtained with the divertor

configuration) are more prone to this motion due to the more strongly shaped magnetic

field required to produce them [27]. The plasma collides with the vessel, causing its

current to flow through the vessel components and transfers a substantial fraction of its

stored energy to them. This is followed by the onset of a plasma disruption and the loss

of vertical control. Each VDE is expected to deposit an energy density of ∼60 MJ·m−2

in a pulse duration of 100 to 300 ms (200 to 600 MW·m−2) and to occur in about 1 %

of operational cycles. Furthermore, VDEs induce a lifetime limiting damage because,

due to their relatively long duration, they do not produce a shielding vapor cloud as

it happens during any intense but shorter power depositions (disruptions and ELMs)

[28]. Thus, in addition to erosion and melting [29], VDEs can severely damage the

structural materials and coolant channels beneath the in-vessel surfaces.

Additionally in-vessel components are subjected to high fluxes of energetic neutrons

in D-T-burning plasma devices, a critical issue both from a safety point of view but

also under the aspect of the component’s lifetime [30]. The predicted neutron damage

in ITER is ∼1 dpa (displacements per atom; for low-Z materials 1 dpa corresponds

to ∼1025 n·m−2). Future thermonuclear confinement devices such as DEMO and com-

mercial fusion reactors will exhibit integrated neutron wall loads up to 150 dpa [31].
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1.4 Plasma-facing components

In-vessel components, so-called plasma-facing components (PFCs), are key components

of a fusion power plant because on the one hand they are submitted to extremely

severe operating conditions in terms of heat loads and neutron damage [32, 33] and

on the other hand they have a large impact on the overall plant design, performance,

availability, safety, and associated cost of electricity. All PFCs are cooled (1) to sustain

steady state operation as the heat flux received by these components is extremely

intense and (2) to remove the plasma particles energy that is further used in a heat

conversion process.

The main PFCs are the the first wall and the divertor [34]. The first wall covers the

inner surfaces of the vacuum vessel [35]. Directly facing the plasma its function is to

remove the heat flux. The neutron flux is intercepted by the blanket, which is located

immediately behind the first wall [36]. When made of lithium the additional function

of the blanket is to produce tritium (tritium breeding blanket) through the reaction

1.4 [37]. The ensemble first wall and blanket provides shielding from the heat and

neutron fluxes to the vessel and magnets [38]. The divertor is situated along the bot-

tom of the vacuum vessel. Its function is to exhaust the flow of energy from charged

particles produced in the fusion reactions and to extract the helium ashes (He ions

are burnt in the fusion process and must be replaced by new fuel), the unburned fuel

and eroded particles (i.e. impurities) from the plasma [39]. After a collision with the

divertor plates, charged particles neutralize (i.e. become atoms or molecules by recom-

bination with electrons) until they either ionise once again in contact with the plasma

or are taken out of the chamber thanks to a pumping system installed near the divertor.

The divertor remains an experimental device that needs to be replaced and upgraded

several times during the life of ITER. To enable rapid replacement the ITER divertor is

made up of 54 remotely-removable cassettes [40]. This approach provides an accurate

mechanical support and the flexibility to change the configuration of the PFCs. Each

cassette holds three PFCs: the inner and the outer vertical targets, and the dome

(figure 1.8) [41]. The PFCs include a thick stainless steel back support with water

coolant manifolds for an array of copper alloy heat sinks covered with armour materials,

so-called plasma-facing materials (PFMs). The stainless steel structure is bolted to rails

on the vessel floor.

Different design options for the attachment of the PFMs to the heat sink have been

developed, manufactured and tested [42–48]. Two geometrical configurations can be

adopted for the PFCs: flat tile and monoblock (figure 1.9) [49–51]. The heat sink, in

general a precipitation-hardened or a dispersion-strengthened copper (Cu) alloy (e.g.

CuCrZr) with an integrated high pressure coolant tube has now become the standard

technology for ITER or other existing medium- and long-pulse fusion devices [52–55].

To reduce stresses that might affect the integrity of the PFM or the joint (stresses due to

the thermal expansion mismatch between the armour and the heat sink material as well
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Figure 1.8. ITER divertor cassette [11]. The plasma flux arrives at the edge
zone where it neutralises on the divertor plates. The neutral flux is then collected
through chevrons and guided to a pump.

as thermally induced stresses due to the thermal gradient during plasma exposure), a

segmentation of the PFM using thin slots (or castellations) perpendicular to the surface

down to the heat sink (macrobrush) is frequently used. The so-called monoblock design

consists of cube-shaped monolithic tiles with a cylindrical hole in their center in which

the water cooled tube is inserted and joined to the armor material by means of a soft Cu

interlayer. Small scale components like those shown in figure 1.9 are usually fabricated

to test the PFMs under fusion relevant thermal loads using for example electron beam

facilities [56, 57].

Figure 1.9. Mock-up designs for the ITER divertor plasma-facing components:
(a) carbon fibre composite flat tile, (b) tungsten flat tile (macrobrush), (c) carbon
fibre composite monoblock, and (d) tungsten monoblock [58].
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For DEMO, helium-cooled divertor concepts have been investigated. The advantages

of He as coolant compared to water are explained in [59]. The approach for the layout

of the divertor is similar to ITER with the division of the component into cassettes

composed of outer and inner targets, a dome, and the backbone structure or bulk

which houses the manifolds for the coolant. But the design of the divertor PFCs is

different because for DEMO and power plant divertors the high operating temperature

and irradiation levels preclude the use of Cu and the required thermal conductivity

(∼100 W·m−1·K−1) and maximum allowable temperature (>1000◦C) rules out ferritic
steel as structural material (for the assumed heat fluxes of 10 MW·m−2). The only

possibility is then a refractory alloy, e.g. tungsten alloy. Thus, most recent DEMO or

power plant divertor design studies in the EU and the US utilise a He-cooled W alloy

configuration to provide high-temperature operation and high power cycle efficiency

[60].

1.5 Plasma-facing materials

The PFCs have to withstand severe thermal, particle and neutron fluxes. Therefore,

the selection of suitable materials for high-end projects such as ITER and DEMO is a

challenging task being the object of numerous studies [6]. Ideally, the PFMs have to

meet the following requirements [61, 62]:

• high thermal conductivity

• high melting or sublimation point

• high neutron bombardment resistance

• high thermal shock resistance

• low tritium inventory

• low erosion rate

• low plasma contamination (i.e. low Z)

• technical requirements (availability, cost, workability)

Additionally the PFMs have to operate at a broad temperature range from 100 (tem-

perature of the coolant in ITER) up to 2000-3000◦C. No known material meets all

these requirements at a time but Beryllium (Be), Carbon Fibre Composite (CFC), and

tungsten (W) meet most of them. Table 1.1 shows their respective advantages and

disadvantages.

In the present design of ITER the armor material for the first wall is Be [59, 63, 64]

whereas for the divertor vertical targets, W is employed at the upper curved part and
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Beryllium Carbon fibre composite Tungsten

+ good thermal con-
ductivity (∼190
W·m−1·K−1 at RT)

+ low plasma contam-
ination due to low Z

+ low activation

+ oxygen getter ⇒
improves vacuum
conditions

- low melting point
(∼1560 K)

- short erosion life-
time (melt layer
loss)

- thermal conductiv-
ity decreases with
temperature

- low neutron radia-
tion resistance

- special safety rules
related to toxicity

+ excellent thermal
conductivity (up to
∼450 W·m−1·K−1

at RT)

+ no melting point
at all (sublimation
starts at ∼3800 K)

+ high thermal shock
resistance

+ low plasma contam-
ination due to low Z

- high erosion rate at
high temperature

- high tritium inven-
tory

- thermal conductiv-
ity decreases signifi-
cantly with temper-
ature and neutron
irradiation

- poor oxidation re-
sistance

+ good thermal con-
ductivity (∼170
W·m−1·K−1 at RT)

+ thermal conduc-
tivity hardly influ-
enced by neutron
irradiation

+ extremely high
melting point
(∼3695 K)

+ low erosion rate

+ good thermal shock
resistance

+ low tritium inven-
tory

- high Z ⇒ possible
plasma contamina-
tion

- rather poor me-
chanical properties
⇒ poor workability

Table 1.1. Advantages and drawbacks of plasma-facing materials.

CFC is used at the lower straight part around the strike point, where the heat flux is

the highest (figure 1.10) [62, 65]. Be, W and CFC armored areas are about 700 m2,

70 m2, 50 m2, respectively [66]. Tungsten only is considered as armor material for the

vertical target of the future ITER divertor sets. In fact, W materials were selected as

the plasma-facing material of the divertor in the European DEMO reactor design; the

use of CFC will be avoided to reduce the tritium inventory [67] and massive erosion

[68–73] expected to follow the reduction of thermal conductivity as a result of the

neutron irradiation [74–76].
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Figure 1.10. Poloidal cross section of ITER showing the layout for the plasma-
facing components with the armour materials for the initial operation phase [77].

1.6 Tungsten as plasma-facing material

Tungsten has good thermo-physical properties, namely a high melting point (the high-

est of all metals) [78], good thermal conductivity and low vapor pressure [79]. Disadvan-

tages of tungsten are melting under intense transient thermal loads, poor machinability,

high neutron activation and high volatility of the oxides. Also, W has a relatively low

coefficient of thermal expansion (CTE) and is very brittle below the ductile to brittle

transition temperature (DBTT), which is in the range of 400 to 600◦C [80]. Conse-

quently, cracks occur during thermal shock or thermal fatigue when W is utilised below

DBTT. Crack formation is critical because as soon as cracks propagate to the heat sink

material the whole component has to be replaced (i.e. cracks can cause component fail-

ure). The operating temperature windows of solid pure W is thus limited by the DBTT

and the recrystallisation temperature, which is about 1300◦C [81]. However, the DBTT

varies with the annealing temperature and increases after neutron irradiation.

On the other hand tungsten is desirable because of its low tritium retention and lower

sputtering yield enabling longer operation time compared to Be and CFC. Tungsten-

armoured components were successfully experimented in fusion devices, for example in

the ASDEX Upgrade tokamak [82–85], and W-armoured divertor concepts for DEMO

were already investigated [86]. Furthermore, W coatings, deposited on PFMs (e.g.

CFC) to increase their loading resistance, were synthesised by vapor plasma spraying

(VPS) [87, 88] or chemical vapor deposition (CVD) [89, 90] and investigated under

fusion relevant loading conditions [86, 91–99].
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The required amount of W for PFCs in ITER is about 85 t. This value stands for a

small fraction of the world annual production. Consequently, sufficient W is available at

industrial levels even if additional W is necessary to exchange the reactor components

[100].

1.7 Thermally induced damage in tungsten

The plasma-wall interaction causes irreversible damage that shortens the lifetime of the

components. Typically thermally induced mechanical stresses in W lead to damages

such as roughening, swelling, cracking, erosion, and melting, depending on the energy

deposition on the material and its base temperature. Electron beam facilities are often

used to test materials under high temperatures. Thereby, it has to be taken into

account that unlike the conditions in a thermonuclear fusion device the electron beam

deposits its energy in the volume of the material. The penetration depth of electrons

strongly depends on the acceleration voltage and the density of the material. The

thermal response of W under electron beam loading is shown in figure 1.11. As the

Figure 1.11. Damage types induced in tungsten as a function of the power
density applied by electron beam loading.

material is heated up the heat affected grains expand in response to the temperature

increase. Due to thermal expansion, grains are subjected to compressive stresses that

induce plastic deformation leading to roughening or surface elevation. During cooling

down, W shrinks and is subjected to tensile stresses that lead to cracking (once the

tensile strength of W is exceeded). Typically cracks occur at grain boundaries where

the strength of the material is lower. The cracks proceed along the grain boundaries

and lead to particle erosion once the crack depth exceeds the grain size. Thus, the

material’s degradation is strongly related to its microstructure. Increasing the applied

energy density causes melting of the material.
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1.8 Scope of the work

The design studies for ITER and DEMO and their success are based on the technical

feasibilities of the plasma-facing components which can guarantee a reasonable lifetime

from safety and economical points of view. This lifetime is limited by thermally in-

duced damages in the plasma-facing materials. Thus, one of the most critical issues

on the utilisation of plasma-facing materials is their performance under high thermal

loads. The weak point of W materials is the poor mechanical properties (e.g. the high

transition temperature from brittle to ductile, the low toughness) that result in the

low cracking resistance under thermo-mechanical loads. To understand the behaviour

of W materials and to develop high cracking-resistant W grades, many thermal loading

tests were performed with various W grades in the fusion community. However, there

are only limited results from the steady-state thermal loads (or thermal fatigue loads)

and, moreover, the data only concerned a fraction of W materials. Furthermore, the

impact of machining induced defects on the performance is unknown. Therefore, it is

still not sufficient to extrapolate the performance of W and predict the components

lifetime and failure mode under the cyclic thermal fatigue loads in the fusion relevant

conditions (e.g. in ITER and DEMO).

Besides the investigation of high-performance W materials the technology suitable for

W machining is also of significant importance. Depending on the machining process

and parameters, defects can be introduced in W surfaces during manufacturing due to

the brittleness of the material at room temperature. The impact of process induced

surface modification on the performance of W under fusion relevant loading conditions

has not been studied in detail yet.

The objective of this work was to find key parameters for high-performance W materi-

als (1) and components (2) under cyclic thermal fatigue loads. The ultimate objective

was to contribute to the lifetime prediction of W component in terms of cracking re-

sistance (damage threshold, damage development rate).

For this purpose a qualification program for W was launched and experiments were

performed under fusion relevant thermal loads in the electron beam facility JUDITH 1

at Forschungszentrum Jülich, Germany. This required the design of specific test mod-

ules and Finite Element (FE) calculations to achieve ITER and DEMO specific surface

temperatures.

As W materials, pure W supplied by Plansee (Austria) and Polema (Russia) were

investigated. Different material’s geometries and deformation processes were selected,

namely forged rods as well as forged or rolled plates. As it was essential to know the

initial states of the W materials to discuss the failure, the microstructure (grain size

distribution, porosity, and grain orientation) was analysed in detail by microscopy and

metallography before high heat flux loading. Those material characterisations were

carried out after each thermal load tests.
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Pre-cracked and defect-free (polished) samples were prepared and tested under cyclic

thermal fatigue loads. Here, the loading parameters were the various loading surface

temperatures (∼1000-2000◦C) that generate thermal stress at the loaded surfaces. The

surface modification induced by loads were characterised and discussed in terms of (i)

material characteristics including (ii) pre-cracking effects, (iii) loading parameters such

as surface temperatures, (iv) cycle number and (v) power density (chapter 3).

Within the European Power Plant Conceptual Study (PPCS) [86] a helium-cooled di-

vertor concept for DEMO was developed. The concept is based on the assembly of

small W-armoured PFCs so-called fingers. The W components were fabricated and

tested under DEMO specific steady-state thermal loads in the electron beam facility

TSEFEY using helium cooling. The failure mode of the components was analysed by

metallography and material characterisation (chapter 2).

Finally, the fabrication technology for W components was investigated in terms of

the damage in machined surfaces and the efficiency. This study included machining

techniques such as turning, grinding and electric discharge machining (appendix A).



2 Failure mode of plasma-facing compo-

nents for the European DEMO divertor

2.1 Introduction

Divertor armour materials for future power plants to be built after ITER (e.g. DEMO)

are supposed to be exposed to steady-state thermal loads with a power density of several

MW·m−2 as well as transient themal loads with a power density of a few GW·m−2 [58].

The consequential requirement of an armour material with high resistance to high heat

and particle fluxes similar to ITER led to the choice of W as the most suitable material

for the divertor [101].

In contrast to ITER, DEMO shall act as a prototype for commercial reactors and there-

fore provide higher energy conversion efficiency. For this purpose helium(He)-cooled

divertor concepts were developed [31]. The use of He at temperatures above 600◦C, in
addition to increase the thermal efficiency of the power conversion systems [102], en-

ables to keep the temperature of W above its ductile to brittle transition temperature

(DBTT), thus lowering the risk of potential damages and improving the general armour

material’s performance. In addition, He-cooled divertor concepts are compatible with

other concepts for the blanket [103–106].

For the European DEMO divertor a so-called He-cooled modular jet (HEMJ) concept

was defined as the reference design [107]. It uses small tungsten PFCs, so-called fin-

gers, which are assembled into bigger parts, namely divertor target plates relying on

an impingement cooling with high-pressure helium jets (figure 2.1). Among others,

Research & Development (R&D) activities towards the DEMO divertor comprise the

development and the testing of He-cooled W components under cyclic thermal loads

as well as analysis by metallography and material characterisation to study the failure

mode of the components [108]. The latter will be described in detail in this chapter.

2.2 Design of the divertor component

The HEMJ design is based on the assembly of small plasma-facing components, the

fingers, cooled by He. The requirement of armour materials with a high resistance

against sputtering, high thermal conductivity and high mechanical strength led to

the selection of W (or its alloys) as the most promising plasma-facing material for the
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Figure 2.1. Scheme of the helium-cooled modular jet (HEMJ) concept for the
European DEMO divertor [109]. The divertor requirement is to withstand a high
heat flux of at least 10 MW·m−2. The concept is based on small helium-cooled
tungsten plasma-facing components (right) so-called fingers assembled into diver-
tor target plates (left and middle).

components. Drawbacks of W are its high DBTT and low recrystallisation temperature,

which restrict the designed operating temperature window of the material as structural

part. However, the ductility of W can be increased by adding fine oxide particles to it.

Thus, the alloy W-1%La2O3 (WL10) is regarded as a reliable option for the structural

part of the divertor yet [107].

Each finger is made of five parts: the tile, the thimble, the conic sleeve, the supporting

structure and the cartridge (figure 2.2). The tile is made from pure W and directly

exposed to the plasma, acting as sacrificial layer and thermal shield for the heat sink

or structural part located underneath, the thimble, made of W alloy (W-1%La2O3).

The hexagonal shape of the tile is 18 mm wide and 5 mm thick, whereas the thimble,

hollow in the inside, has a cylindrical shape with an outer diameter of 15 mm and a

wall thickness of 1 mm. The purpose of designing two separate W parts is to stop at

the interface between the tile and the thimble possible damages due to thermal stresses.

This addresses, in particular, the propagation of cracks from the plasma-facing part to

the heat sink part that would cause He leakage. Castellations with a width of 0.2 mm

and a depth of 5 to 3 mm are machined in the tile to reduce thermal stresses during

loads. The thimble is connected to the front plate of a supporting structure made of

steel (oxide dispersion-strengthened reduced activation ferritic and martensitic steel

in the design) with a sleeve locked mechanically around both the thimble and the

supporting structure and secured by means of brazing or casting. A steel cartridge

is then inserted inside of the hollow thimble. There are 24 holes in the cap of the
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cartridge, which acts as a sprinkler head (each hole has a diameter of 0.6 mm, except

the one at the center which has a diameter of 1 mm). The distance between the top

of the cartridge and the thimble is 0.9 mm [107]. The cartridge (in particular the

dimension of the holes) was the object of careful thermohydraulic analysis [110, 111].

The finger has a height of about 30 mm and a width of about 20 mm [112]. The

components are cooled through the cartridge by He jets (10 MPa, 600◦C) impinging

on the inner surface of the thimble [113]. The design and its evolution was described

in detail elsewhere [114].

Figure 2.2. (Left) Scheme of the finger design and (right) view of a component
fabricated according to this design [115]. The tile (pure tungsten) directly facing
the plasma acts as a thermal shield for the structural or heat sink part below, the
thimble (tungsten alloy, W-1%La2O3), which is cooled by helium jets through a
steel cartridge impinging on the thimble’s inner surface.

Computational fluid dynamics (CFD) simulations showed that for the nominal case

of components exposed to a power density of 10 MW·m−2 and cooled by He with an

internal pressure of 10 MPa and a mass flow rate (MFR) of 6.8 g·s−1, the yielded

maximum temperatures in the tile and the thimble were about 1700◦C and 1170◦C
respectively (figure 2.3).

2.3 Fabrication of divertor modules

For design verification and proof-of-principle, several modules were manufactured and

tested under high heat flux. The R&D on the technologies for the shaping of the W

parts (tile and thimble) and the joining (of W to W-1%La2O3 and W-1%La2O3 to

steel) were performed at the Karlsruhe Institute of Technology (KIT) in Karlsruhe,

Germany, and at D.V. Efremov Scientific Research Institute of Electrophysical Appa-

ratus (NIIEFA) in St. Petersburg, Russia [107, 117–120].
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Figure 2.3. Temperature distributions in the tile and the thimble calculated by
computational fluid dynamics (CFD) simulations under the following conditions:
power density 10 MW·m−2, helium gas’ internal pressure and mass flow rate of
10 MPa and 6.8 g·s−1 respectively [116].

2.3.1 Material selection

The pure W and W-1%La2O3 materials (for tile and thimble respectively) were pro-

duced by powder metallurgical routes that typically end with the deformation by forg-

ing or rolling of the sintered blanks into rod- or plate-like geometries. The deformation

processes induce preferential grain orientations as illustrated below (figure 2.4).

Figure 2.4. EBSD micrograph of the cross section of a W-1%La2O3 forged rod
[121]. The microstructure showed a preferential grain orientation characteristic of
the deformation process (here forging).

Typically cracks in W occur and propagate along the grain boundaries. The cracking

behaviour depends on the orientation of the heat flux with respect to the grain orien-
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tation. Hereby the performance of the modules was investigated with respect to the

grain orientation of the plasma-facing material (for the tile) that was either parallel or

perpendicular to the heat flux (the grain orientation of the structural material for the

thimble was always parallel to the heat flux).

Here, the materials were forged rods (pure W and W-1%La2O3) provided by Plansee

AG (Austria) or JSC Polema (Russia) or rolled plates provided by JSC Polema only.

The cutting scheme of the materials for the armour with respect to the grain orientation

is shown in figure 2.5. They were then shaped using machining techniques, namely

turning, milling and electric discharge machining (EDM) [122, 123]. A surface finishing,

namely mechanical grinding, was applied to most of the W parts to remove any defect

induced by the above-mentionned machining processes.

Figure 2.5. Sketches of the cutting schemes for the plasma-facing part with
respect to the material’s grain orientation. The heat flux (indicated by the red
arrow) was applied either parallel (forged rod materials) or perpendicular (forged
rod and rolled plate materials) to the grain orientation.

2.3.2 Joining technology

The joining of the parts (tile to thimble and thimble to supporting structure) was

performed as follow: first the brazing (or casting) of the thimble and sleeve and then

the brazing of the tile and thimble. The latter was performed with a nickel (Ni) alloy

filler metal, STEMET® 1311 (Ni-based, 16.0 cobalt (Co), 5.0 iron (Fe), 4.0 silicon

(Si), 4.0 boron (B), 0.4 chromium (Cr)) with a brazing temperature of 1050◦C, or with
a Cu-based alloy filler metal, CuNi44 with a brazing temperature of 1300◦C. For the
joining of the thimble to the conic sleeve, either Cu casting or brazing with a cobalt

(Co) alloy filler metal, 71KHCP® (Co-based, 5.8 Fe, 12.4 Ni, 6.7 Si, 3.8 B, 0.1 man-

ganese (Mn)) with a brazing temperature of 1100◦C, was used.

Table 2.1 summarizes the fabrication matrix of the components along with the detailed

testing parameters.
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2.4 Testing under cyclic thermal loads

After fabrication the divertor modules were tested under steady-state thermal loads in

the electron beam facility TSEFEY (figure 2.6) [124–126], which has a maximum beam

power of 200 kW and an acceleration voltage of 40 kV. For the beam guidance a TV-

like scanning mode was used with frequencies of 0.2 and 0.5 kHz in x- and y-direction

respectively. Because of the large beam diameter (20 mm) the power was not only

deposited on the component itself but also on a beam dump in a plane immediately

below the component. The absorbed power density was measured by water calorimetry.

A digital camera and an infrared camera were used to measure surface temperatures

above and below 600◦C respectively while a two-color pyrometer was available for

temperatures above 900◦C. A He loop was connected to the facility to ensure the

cooling of the modules by He. The He mass flow rate was gained from a measurement

of pressure drop over a defined hole.

Figure 2.6. (Left) Scheme and (right) view of the electron beam facility TSEFEY
connected to a helium loop used for the testing of the components under high
thermal loads [109]. It has a maximum beam power of 200 kW and an acceleration
voltage of 40 kV.

The modules were exposed to power densities in the range of 5 to 13 MW·m−2. The

He parameters were an internal pressure of 10 MPa, inlet and outlet temperatures

in the range of 495 to 635◦C, and a MFR in the range of 9 to 13 g·s−1. The cyclic

thermal loading was simulated by switching the beam on and off periodically. The cycle

duration was 60 s (typically 30 s beam on and 30 s beam off). A few components were

tested with a so-called “soft ramp” during which the power was increased slowly for

20 s until it reached the desired power density, then maintained for 20 s, then decreased

for 20 s and finally shutdown for 20 s. The “soft ramp” had no impact on the modules’

performance [109]. The testing parameters per module are listed in table 2.1.
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2.5 Results

2.5.1 Plasma-facing part

During testing cracks occurred in the loaded surfaces due to thermally induced me-

chanical stresses, too high compared to the strength of W materials (figure 2.7). The

fracture mode was cracking by tensile forces (as described in section 1.7). The crack

distance was in the range of the grain width (∼100 μm). The ground surfaces were eas-

ily recognisable as they showed a smooth aspect even after thermal loads (figure 2.7(a))

whereas the as-machined surfaces appeared rougher (figure 2.7(b)). Thus, the grinding

process did not prevent crack formation by thermal fatigue. In addition to cracking the

components #14 and #32 (table 2.1) showed surface melting; the grains were molten

individually (figure 2.7(c)). Surface melting was related to a defective bond between the

Figure 2.7. SEM micrographs of the loaded surfaces after (a) 18 cycles at
10 MW·m−2, (b) 89 cycles at 10 MW·m−2 and (c) 90 cycles at 9 MW·m−2 showing
cracks due to thermal stresses. A few components showed surface melting on top
of surface cracking due to a defective bond between the plasma-facing and heat
sink parts.

plasma-facing and heat sink parts that led to partial or complete detachment of the tile

from the thimble. Complete detachment led to significant crack opening (figure 2.8).

The examination of the cross section of the loaded surfaces revealed that cracks induced

by thermal fatigue formed dense crack networks in the plasma-facing part (figure 2.9).
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Figure 2.8. SEM micrographs of the loaded surfaces area after (a) 90 cycles
at 9 MW·m−2 and (b) 10 cycles at 10 MW·m−2 showing surface melting and
significant crack opening due to overheating of the plasma-facing part after its
detachment from the heat sink part.

Figure 2.9. BSE micrograph of the cross section of the loaded area after 89
cycles at 10 MW·m−2. Cracks induced by thermal stresses in the plasma-facing
parts propagated and formed dense crack networks.

The crack depths in components #12, #13, #17 (table 2.1) were about 118, 163,

180 μm respectively. The crack depth showed a tendency to increase with the cycle

number among the components tested with a He MFR of 9 to 10 g·s−1 (figure 2.10).

The crack depths in components #5 and #21 (table 2.1) were shallower (43 and 69 μm

respectively) although they were tested at higher cycle numbers (more than 100 cycles).

It indicated that the increase of the mass flow rate (from 9 to 13 g·s−1) led to a decrease

of the crack depth. The higher the mass flow rate, the greater the cooling efficiency.

Consequently, the surface temperature during the thermal loading was lower and so

were the thermal stresses. Therefore, the decrease of the operation temperature pre-

vented the crack development to a certain extent. The crack depths of the components

#14, #24 and #32 (table 2.1) were not measured because these components showed
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a particularly severe failure mode related to joining issues between the plasma-facing

and heat sink parts.

Among the components tested with a He MFR of 13 g·s−1, component #5 (with a tile

made of a Polema W rod) showed a lower crack depth compared to component #21

(with a tile from a Plansee W rod). The behaviour of the Polema W has to be rated

even higher based on the fact the tile of component #5 had no castellation slots,

implying greater thermal stresses, and was subjected to a higher cycle number than

the tile of component #21. This difference in terms of crack depth and crack density

showed that the resistance to crack propagation depended on the W grade.

Figure 2.10. Crack depth in the plasma-facing part as a function of the cycle
number. Among the components tested with a helium mass flow rate (MFR) of 9
to 10 g·s−1, the crack depth showed a tendency to increase with the cycle number.
The increase of the MFR enhanced the cooling efficiency, reduced the thermal
stresses and minimised the crack propagation in the loaded surface.

Due to differences in terms of testing parameters (cycle number, power density and

mass flow rate) and material selection between the divertor modules, the impact of the

surface finishing on the crack development could not be accurately determined.

The cracks induced by thermal stresses propagated along the grain boundaries. Thus,

in the rods with a grain orientation parallel to the heat flux the cracks followed the

direction of the grain orientation and propagated perpendicular to the loaded surface,

towards the heat sink (figure 2.11(a)-(c)). The W plate used for the tile of the compo-

nent #29 (table 2.1) surprisingly showed no particular grain orientation. Consequently,

the cracks were remarkably shallow although the component was tested at a relatively

high power density (14 MW·m−2) (figure 2.11(d)).
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Figure 2.11. BSE micrographs of the cross sections of the loaded surfaces after
(a) 89 cycles at 10 MW·m−2, (b) 100 cycles at 9.5 MW·m−2, (c)124 cycles at
9 MW·m−2, and (d) 39 cycles up to 14 MW·m−2. At the same helium mass flow
rate (13 g·s−1) Polema materials (rod and plate) showed better resistances to crack
propagation compared to Plansee materials.

The as-machined components #11 and #16 (table 2.1) showed discrete microcracks

that occurred in the surfaces (contours and castellations) of the plasma-facing part

during machining. These microcracks resulted from stresses due to the rapid heating

and cooling effects induced by the discharges during the EDM process [127]. The crack

depth was typically about 30 μm (figure 2.12).

Figure 2.12. BSE micrograph of the cross section of the as-machined plasma-
facing part (e.g. component #11) showing microcracks induced in tungsten sur-
faces by electric discharge machining (EDM).

As the grinding process removed 0.2 mm thick W layers, it also removed the discrete

cracks induced by EDM except in the castellations that were too narrow (0.2 mm

large) to allow any finishing tool to penetrate in-between (figure 2.13(a)). In the tested

components, defects were observed on top of cracks in regions close to the castellations

(figure 2.13(b)). Those defects could be related to pre-existing defects (e.g. cavities)

in the raw W materials (i.e. rods and plates) that developed under thermal loads. It

could also be related to machining-induced defects that developed by thermal stresses.

Or the combination of both.
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Figure 2.13. BSE micrographs of the cross sections of the tile (a) after machin-
ing and (b) after 70 cycles at 9 MW·m−2 showing microcracks in the castellations’
surfaces induced by EDM and cracks as well as defects in the same region respec-
tively. The microcracks induced by EDM could have grown and futher damaged
the components during thermal loads.

2.5.2 Structural-heat sink part

At the edge of the joint between the plasma-facing (tile) and the structural (thimble)

parts brazed with the Ni-based filler metal (STEMET® 1311), cracks occurred inside

of the as-machined brazing layer due to residual stresses and propagated in the W

materials (figure 2.14(a)). During thermal loads, a multi-phase formed at the joint’s

interfaces (figure 2.14(b)) and grew up with increasing the cycle number (figure 2.14(c)).

The energy-dispersive X-ray (EDX) spectroscopy of the multi-phase showed W mixed

Figure 2.14. BSE micrographs of the cross sections of the tile-thimble joint
(edge) brazed with the nickel-based filler metal (a) before testing, (b) after 18
cycles at 10 MW·m−2 and (c) 70 cycles at 9 MW·m−2. Cracks occurred in the
as-machined brazing layer and propagated in the tungsten-based materials. In
addtion, a multi-phase occurred at the joint’s interfaces during thermal loads.

with elements contained in the brazing metal, namely Ni, Si, Fe, and Co (figure 2.15).

Thus, the multi-phase resulted from a metallurgical reaction between the tungsten-

based materials and the brazing metal.
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Figure 2.15. (Top) BSE micrograph of the cross section of the tile-thimble joint
(edge) after 18 cycles at 10 MW·m−2 and (bottom) EDX analysis of the brazing
layer. The multi-phase that contained tungsten and elements of the nickel-based
brazing metal (Ni, Si, Fe, Co) resulted from the metallurgical reaction between
the tungsten-based materials and the brazing metal.
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In the middle of the same joint (near the top of the thimble) this multi-phase was also

observed but in addition there was a large cavity after thermal loads (figure 2.16). For a

Figure 2.16. (Left) Optical micrograph of the cross section of the divertor module
after 124 cycles at 9 MW·m−2 showing a gap in the tile-thimble joint (in the red
dotted circle) that formed after the leak of the nickel-based brazing metal. (Right)
BSE micrograph showing a closer view of the brazing layer with the cavity as well
as an intermetallic phase formed after the reaction of the tungsten-based materials
with the brazing material.

power density of 10 MW·m−2 and a MFR of 6.8 g·s−1 the temperature in this region of

the joint was calculated about 1170◦C (figure 2.3 in section 2.3), higher than the brazing

temperature of the filler metal (1050◦C) that melted and leaked away. Furthermore,

the plasma-facing part was covered by a layer that had a typical aspect of re-solidified

structure (figure 2.17). The EDX analysis of the layer enabled to identify traces of Ni,

Co, Fe and Si (grey contrasts), which composed the brazing metal, forming different

brittle phases with the W material (the bright contrast). Therefore, the cavity in the

joint, characteristic of the tested components, resulted from the loss of the brazing

metal after its migration through the tile by capillary forces, towards the top surface.

In addition, a hole (with a diameter of 60 μm) was observed in the re-solidified brazing

layer covering the plasma-facing part (figure 2.18(a)). This hole characterised by a

smooth outline formed after the erosion of cracks by the molten Ni-based brazing

metal. During its migration towards the top surface the liquid brazing metal eroded

W and led after cooling down to that top surface layer containing the same multi-

phase as that observed in the tile-thimble joint (figure 2.18(b)). The thickness of the

re-solidified layer reached hundreds of μm (figure 2.18(c)).
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Figure 2.17. (Top) BSE micrograph of the loaded surface after 124 cycles at
9 MW·m−2 showing a re-solidified layer and (bottom) EDX analysis of this layer
revealing W and brazing metal elements (Ni, Co, Si, Fe). The plasma-facing part
was covered by the nickel-based brazing metal that melted, migrated through the
tile to the top surface and re-solidified on it.



34 Failure mode of plasma-facing components for the European DEMO divertor

Figure 2.18. (a) SEM micrograph of the loaded surface after 124 cycles at
9 MW·m−2 showing a hole that resulted from the erosion of cracks by the molten
nickel-based brazing metal. (b) and (c) BSE micrographs of the cross section
of this region showing a multi-phase in the re-solidified layer resulting from the
dissolving of tungsten in the brazing metal.

The Ni-based brazing filler metal led to a noticeable degradation of the components

after it melted during the cyclic thermal loading. Its melting point was too low

with regard to the calculated average operation temperature in the tile-thimble joint

(∼1170◦C) . The brazing filler metal CuNi44 that has a higher brazing temperature

(1300◦C) was used as an alternative. Like STEMET® 1311, CuNi44 led to the for-

mation of a multi-phase in the as-machined brazing layer due to the reaction of the

W-based materials with the Ni contained in the brazing metal (figure 2.19). The

Figure 2.19. BSE micrograph of the cross section of the as-machined tile-thimble
joint brazed with the copper-based brazing metal (CuNi44). The reaction between
the tungsten-based materials and the nickel contained in the brazing metal led to
the formation of a multi-phase (the light grey contrast between the dotted lines)
before thermal loads already.

analysis of the braze layer by EDX identified a multi-phase containing W and Ni. Fur-

thermore, cracks also occurred in the CuNi44 as-machined brazing layer due to residual

stresses.



Results 35

Beside the multi-phase a large cavity occurred probably due to improper filling of the

gap between the tile and the thimble during the brazing procedure (figure 2.20(a)).

Consequently, cavities were also observed after thermal loads (figure 2.20(b)). Such

cavities appeared systematically in the few components brazed with CuNi44 compo-

nents, provoking their early (i.e. at small cycle number) failure (less than 50 cycles

and 10 cycles only for components #24 and #32 respectively) or their exclusion from

the testing campaign (e.g. component # 26). At the edge of the joint there were no

cavities but large cracks occurred inside of the brazing layer of the tested components

(figure 2.20(c)).

Figure 2.20. BSE micrographs of the cross sections of the tile-thimble joint
performed with CuNi44 (a) as-machined showing a gap due to an improper filling
during the brazing process, (b) and (c) after 45 cycles at 10 MW·m−2 showing
cavities (middle of the joint) and large cracks (edge of the joint).

The cavities in the tile-thimble joint, regardless of the brazing material, acted as ther-

mal barriers and caused the overheating of the plasma-facing part during thermal loads

therefore facilitating the crack development in the loaded surface. Below the joint, on

the thimble’s inner surface cooled by He during thermal loading, the thick oxide layer
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(∼60-100 μm) that formed from the residual oxygen in the helium coolant loop also

acted as a thermal barrier. Such remarkable thickness of the oxide layer in this short

time indicated that the operation temperature was high or there was a high residual

oxygen content. Furthermore, cracks occurred both along and across the grain orien-

tation of the W-1%La2O3 material, creating a path for the helium gas (figure 2.21).

Thereby, the crack propagation was probably facilitated by the strong anisotropic mi-

crostructure of the W alloy material.

Figure 2.21. BSE micrographs of the cross sections of the structural heat sink
part (a) after 70 cycles at 9 MW·m−2 and (b) 90 cycles at 9 MW·m−2 showing an
oxide layer covering the inner surface of the thimble. Cracks occurred in both the
oxide layer and the thimble creating a path and the leakage of helium gas.

2.5.3 Tungsten-steel interface

At the upper edge of the joint between the thimble and the conic sleeve (figure 2.22(a)),

the brazing (or casted) layer formed a conical shaped solid ring on top of the sleeve

(figure 2.22(b)). After thermal loads, large cracks appeared inside of the brazing layer

as well as in the thimble (figure 2.22(c)). In this region the mismatch between the

coefficients of thermal expension (CTE) of the materials is large (∼4-6·10−6 K−1 for

W-1%La2O3 and ∼10-14·10−6 K−1 for steel in a temperature range between 20 and

1000◦C) [118] and so were the cracks.

As observed in the joint between pure W and W-1%La2O3, intermetallic phases, mainly

Fe-Cr-W, formed also in the joint between W-1%La2O3 and steel (figure 2.23).
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Figure 2.22. (a) Optical micrograph of the cross section of the divertor module
(e.g. component #5) showing the upper edge of the joint between the thimble
and the conic sleeve (in of the red dotted circles). (b) and (c) BSE micrographs
of this region showing respectively small defects in the as-machined brazing layer
and large cracks in both the brazing layer and the thimble after 89 cycles at
10 MW·m−2. The large crack width was probably related to the large mismatch
of thermal expansion coefficients between the tungsten alloy and steel. In the
thimble, cracks tended to follow the grain orientation of the material.

Figure 2.23. (Left) Optical micrograph of the cross section of the divertor module
(e.g. component #5) showing the joint between the thimble and the supporting
structure (in the red dotted circles). (Right) BSE micrograph of this region after
124 cycles at 9 MW·m−2 showing an intermetallic phase.



38 Failure mode of plasma-facing components for the European DEMO divertor



3 Performance of tungsten grades under

steady-state thermal loads

3.1 Introduction

Tungsten (W) was selected as plasma-facing material (PFM) in the next-step fusion de-

vice ITER and the European design of DEMO due to its attractive thermo-mechanical

properties, namely its high melting point, high thermal conductivity, low tritium inven-

tory and low erosion rate under plasma loading [101]. In those devices, the materials

will have to withstand thermo-mechanical stresses generated by a large number of

cyclic steady-state heat loads (thermal fatigue loads) with a power density of several

MW·m−2 as well as transient events (thermal shock loads) with a power density of a

few GW·m−2 at low and high repetition rates. Former studies showed that the mi-

crostructural response at high temperatures as well as the thermal fatigue and the

thermal shock resistance of W differ from one grade to another [128].

When produced by powder metallurgy W is going through many processes from mining

to finished products, namely hydrogen reduction (of W oxide), die and cold isostatic

pressing (of the W powder), sintering (of the pressed W blanks), and deformation

(of the sintered blanks). Those steps are performed at specific temperature ranges.

Many parameters, like the raw powder materials, the geometry of the densified blanks

(rod or plate), the degree and the type of deformation of the sintered blanks (rolling,

forging, swaging) and the working temperature have an impact on the microstructure

(grain size, grain orientation, density) and the thermo-mechanical properties (strength,

ductile-to-brittle transition temperature, recrystallisation temperature) of the achieved

material [129]. Consequently, the performance of W under high thermal loads varies

depending on the production history, as illustrated in chapter 2 (the inspection of the

W components for the European DEMO divertor) with the observation of different

cracking resistances depending on the provenance of the W grade (Plansee or Polema).

The combination of material suppliers and production routes leads to a strong variation

of commercially available W grades. There is a lack of data with respect to the life-

time of W under fusion relevant loading conditions. The variation of the performance

observed between the Plansee and the Polema W grades was based on the comparison

of a few components only. To make a qualitative and quantitative statement a statis-

tical approach is required. For this purpose, a W qualification program was performed
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at FZJ and was focused on the evaluation and the comparison of the performance of

pure W grades under fusion relevant thermal loads. This included the design and the

fabrication of actively cooled components, the material characterization, the metallo-

graphic failure mode analysis, the thermo-mechanical finite element (FE) analysis, and

the testing of materials under the combined thermal load (transient and steady-state

thermal loads).

Furthermore, to investigate the impact of process induced surface modifications on

the material’s performance, both specimens with cracked and defect-free (i.e. mirror

polished) surfaces were included within the tests.

3.2 Materials selection

The W materials selected for this study were produced by Plansee or Polema using

the powder metallurgical process. Tungsten products achieved by powder metallurgy

are highly pure (99.95% and above 99.97% in purity for Polema and Plansee products

respectively). Powder metallurgy includes several steps described in figure 3.1. Once

mined, minerals are filtered to obtain W oxides which are then reduced to obtain W

powder. Steps to extract W oxides from ores are described in detail elsewhere [130].

After reduction, alloying and mixing, W powders are densified to various plate and

rod geometries, predominently by die pressing and cold isostatic pressing. Pressed

compacts are then sintered. Finally, the sintered blanks are deformed before being

annealed. Several processes such as swaging, forging, and rolling, might be employed

for the deformation of the blanks.

Figure 3.1. Scheme showing the steps of the powder metallurgy process employed
for the production of the tungsten grades [130].

The combination of several powders, deformation (or forming) processes and product

geometries results in various material’s microstructures, in particular the deformation
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processes induce a strong microstructural modification, an elongation (or deformation)

of the grains along one or two orthogonal directions (figure 3.2). The grain orientation

is an important parameter as it has a clear impact on the response of the material

under thermal loads [128].

Materials investigated in this work were rods and plates deformed either by forging or

rolling. All four Plansee materials were forged rods each with a specific diameter: 12,

30, 60 or 80 mm. The Polema materials were a forged rod with a diameter of 30 mm

and two plates, one deformed by forging and one deformed by rolling, both 25 mm

thick. Samples were cut with the top surface (the loaded surface) perpendicular to the

grain orientation (i.e with the heat flux parallel to the grain orientation) as shown in

figure 3.2.

Figure 3.2. Sketches of typical tungsten microstructures for rod and plate ge-
ometries after forging and rolling. The cutting scheme of the samples is indicated
by the top surface drawn as a shaded hexagon.

Materials characterization

The grain area was measured on the top surface and side (or cross section) of the

samples. To do so, several pictures of the surfaces were taken after etching of the

samples and transparent foils were put on the pictures to reproduce the microstructures

with a pencil. The foils were then scanned in a computer where the grain areas were

calculated numerically. The numerical processing also gives an aspect ratio A (A=1

corresponds to a perfectly symmetrical shape of the grain). Average grain areas as well

as aspect ratios are given in table 3.1.

As expected, the microstructures of the materials were anisotropic, except in the forged

plate which showed no particular grain orientation. In the rods, the aspect ratio of the

cross section was smaller than that of the top view indicating a strong deformation of

the grains on the cross section (as shown in figure 3.2 above). Overall, the grain areas

of the Plansee rods increased with the rod diameter. It has been observed that the

Plansee 30 mm diameter rod was characterised by two distinct grain areas (it was not

deformed homogeneously). The grain areas of the Polema materials were smaller.
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Figure 3.3 shows the as-received microstructures of the investigated materials from the

top surface and cross section views as well as the heat flux orientation with respect

to the grain orientation. The heat flux was applied parallel to the grain orientation

(perpendicular to the top surface) in the rods. As cracks induced in W materials

typically propagate along the grain boundaries, therefore following the direction of the

grain deformation, it was expected to study different cracking behaviours in rods and

plates.

Figure 3.3. Optical micrographs (after etching) of the as-received microstruc-
tures from top surface and cross section views. The red dots and arrows represents
the orientation of the heat flux, applied perpendicular to the top surface.
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3.3 Components for testing under thermal loads

3.3.1 Design of the components

For the testing of the materials under steady-state thermal loads, the loading param-

eters were the cycle number and the various surface temperatures: ∼1200◦C (ITER-

designed surface temperature), ∼1600◦C (surface temperature achieved in the Euro-

pean DEMO design) and ∼2000◦C. All surface temperatures were achieved on one

single component to avoid set-up variations from one component to another (when

changing the cycle number) and to reduce the machine time, in particular the time

required for the loading and unloading of the components in the testing facility. To

achieve the different surface temperatures it was decided to modify the effective thick-

ness of the samples (i.e. the distance between the sample’s top surface and the heat sink

interface) while keeping the power density in a defined range. Thus, each component

included three sets of specimens, each set having a specific thickness corresponding to

a specific surface temperature.

Calculations of the temperature gradients by Finite Element (FE) methods were per-

formed for W sample’s thicknesses (or heights) of 5, 10, and 15 mm (figure 3.4). The

component modeled by FE calculation was identical to the one used experimentally

(further shown in figure 3.8). The distance from the W-to-copper (Cu) interface to the

center of the cooling tube (10 mm diameter) was 7 mm. The heat sink was cooled by

water with a flow rate of 60 l·min−1. Each set of blocks was loaded independently and

within each set the loading was applied on all blocks simultaneously. For a power den-

sity of 15 MW·m−2, calculated surface temperatures were about 792◦C (h = 5 mm),

1462◦C (h = 10 mm), and 2229◦C (h = 15 mm), thus temperature gaps of 380◦C,
138◦C and 229◦C (compared to the designed surface temperatures).

Figure 3.4. FE calculations of the temperature gradients obtained for a thermal
load of 15 MW·m−2 in (left) 5 mm, (middle) 10 mm and (right) 15 mm thick
blocks. The flow rate of the water cooling was 60 l·min−1. The distance between
the bottom of the blocks and the center of the cooling tube was 7 mm.
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Higher temperatures were expected experimentally since the thermal contact between

W and Cu was considered as perfect in the simulation. Therefore, it was decided to

keep the specimen’s thicknesses selected for the simulation (5, 10, and 15 mm) for the

components’ fabrication and to adjust the power density when necessary to achieve the

desired surface temperatures.

3.3.2 Fabrication of the components

In total, three components were fabricated: component #1 for the testing of cracked

surfaces and components #2 and #3 for the testing of defect-free surfaces at two cycle

numbers. Surfaces are automatically cracked after cutting of the raw products (rods,

plates) by electric discharge machining (EDM). For components #2 and #3 the cracks

induced by EDM were removed by polishing.

The components #2 and #3 comprised all W grades (four from Plansee and three from

Polema), whereas component #1 comprised the Plansee grades only (due to a lack of

Polema materials). The allocation of W materials per component is shown in table 3.2.

Company *Component #1 Block no. Component #2 Component #3 Block no.
Plansee rod Ø 12 mm 1 rod Ø 12 mm rod Ø 12 mm 2
Plansee rod Ø 30 mm 2 rod Ø 30 mm rod Ø 30 mm 4
Plansee rod Ø 60 mm 3 rod Ø 60 mm rod Ø 60 mm 1
Plansee rod Ø 80 mm 4 rod Ø 80 mm rod Ø 80 mm 3
Polema - - rod Ø 30 mm rod Ø 30 mm 5
Polema - - plate (forged) plate (forged) 6
Polema - - plate (rolled) plate (rolled) 7

*the tungsten surfaces comprised cracks induced by machining

Table 3.2. Materials distribution per component. The block number refers to
the position of the material on the plasma-facing component (see figure 3.8). In
component #1, the surfaces of the materials were cracked. In components #2 and
#3, the surfaces of the materials were defect-free.

The rods and the plates were cut by EDM in the form of small blocks with a base

area of 5 by 10 mm2 and various heights (5, 10 and 15 mm). The cutting scheme with

respect to the grain orientation was shown in figure 3.2.

During exposure to steady-state thermal loads, the pulse duration lasts several tens

of seconds and quasi-stationary thermal conditions are achieved on the surface of the

material. To reach this thermal equilibrium in our tests, it was necessary to cool the

materials with a heat sink (figure 3.5). The latter was a pure Cu block with dimensions

of 109 mm (component #1) or 156 mm (components #2-3) in length, 24 mm in width

and 30 mm in height. The high pressure coolant tube integrated in the Cu block had

a diameter of 10 mm. The distance between the W-to-Cu interface and the center of

the cooling tube was 7 mm. A shallow pool with a depth of 0.2 mm was grooved in the
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top of the Cu block to accommodate the thin brazing filler metal foil for the joining

process of the samples and prevent the brazing from flowing away when molten. The

distances from the edges of the Cu block to the pool were 4 mm (small edge) and 5

mm (big edge).

Figure 3.5. The heat sink made of pure copper used for the cooling of the
samples. A shallow pool (0.2 mm deep) was grooved on the top surface to accom-
modate the brazing foil for the joining of the samples to the heat sink.

For the bonding of W to Cu four brazing filler metals were qualified: three Cu-based

and one silver(Ag)-based, all in the form of foils except one Cu-based brazing metal

in the form of powder. To qualify the brazing metals, three tests were performed: (1)

wetting test of the brazing metal with Cu, (2) wetting test of the brazing metal with

W, and (3) joining of W to Cu with the brazing metal. These tests were realized on

Figure 3.6. Test coupons for brazing studies, here with the silver-based braz-
ing filler metal VH780GC. (Left) Wetting tests with copper and tungsten (#52.1
and #52.3 respectively) and joint of copper to tungsten (#52.2). (Right) optical
micrograph of the cross sections of curved and straight interfaces of the joint.
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small Cu and W plates with a section of 20 mm2 and a thickness of 3 mm. The request

of smooth wetting and sound joints were best met by VH780GC (Ag-based, 28.0 Cu,

2.0 Ge, 0.3 Ni; brazing temperature of 815 ◦C) shown in figure 3.6. Therefore, this

brazing metal was selected for the joining of the samples to the heat sink.

A graphite holder was built to keep the W blocks in position during the brazing process

(figure 3.7). The dimensions of the holder and sink were identical in length and width,

except the holder’s height was 10 mm. A rectangular hole with a length of 97 mm

(component #1) or 144 mm (components #2-3) and a width of 10.4 mm was machined

in the centre of the graphite block. On the inner surfaces of this hole, small slots (1

mm wide and 1 mm deep) were machined along the height of the holder to insert thin

graphite plates (section: 12 by 8 mm2; thickness: 0.8 mm) between the samples and

prevent them from touching each others. The distances between the slots were 5 mm

for component #1 and 5.5 mm for components #2-3.

Figure 3.7. Graphite holder positioned on the copper heat sink before the brazing
process (component #1). Vertical slots were machined in the inner surfaces of the
holder to insert thin graphite plates, which enabled to keep the samples upright
and distant from each others during the brazing process.

The brazing cycle consisted of several steps: temperature increased from RT to 350◦C
(11.7 K·min−1), then hold at 350◦C for 30 min; temperature increased up to 750◦C
(13.3 K·min−1), then hold at 750◦C for 15 min; temperature increased up to 815◦C
(3.3 K·min−1), then hold at 815◦C for 10 min. Finally, the temperature was decreased

to RT with cooling rates of 13.25 K·min−1 between 815 and 550◦C and 1.5 K·min−1

between 550◦C and RT. Figure 3.8 shows the components after brazing.
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Figure 3.8. Views of (left) component #1 and (right) components #2-3 after
brazing.

3.4 Testing under fusion relevant thermal loads

3.4.1 The electron beam facility JUDITH 1

The materials were exposed to thermal loads in the electron beam facility JUDITH

1 (Juelich Divertor Test Facility in Hot Cells), located in Forschungszentrum Jülich,

Germany. JUDITH has a maximum power of 60 kW and generates electrons with

energies of 120 kV. It can experimentally simulate transient thermal loads such as

plasma disruptions, edge localized modes and vertical displacement events in terms of

power density and pulse duration. Actively cooled components can also be implemented

when simulating steady-state thermal loads (figure 3.9).

Figure 3.9. (Left) Schematic view of the electron beam facility JUDITH 1 used
to simulate fusion relevant thermal loads. (Right) view of the hot cell in which
JUDITH 1 is installed.

The electron beam is generated inside the electron gun using a W filament. The

electron generation is based on the emission of free electrons, their acceleration in an
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electrostatic field and beam focusing via magnetic and electric fields. The electron beam

from a cathode type beam generator operates at relatively high acceleration voltages.

The beam is characterised by a small beam diameter with a full-width half-maximum

(FWHM) of about 1 mm and is swept across the sample surface using a triangular

signal. The beam scanning is realised in the x-y plane typically at frequencies of 40

kHz (x-direction) and 31 kHz (y-direction). It enables a relatively homogeneous heating

of the sample surface. The beam is impinging perpendicular to the sample surface. The

pulse duration can be selected in a range from 1 ms (for transient thermal loading tests)

to continuous (for steady-state thermal loading tests). The generation and unrestricted

propagation of the beam is only possible in high vacuum. Therefore, it is necessary

to evacuate the beam generator, the guidance systems and the working chamber. The

vacuum required in the beam-generating chamber is usually in the order of 10−2 to

10−4 Pa. Cooling of actively cooled components is performed with water at room

temperature at a (maximum) flow rate of 60 l·min−1. The flow rates were monitored

with two turbine flow meters.

JUDITH 1 is equipped with various diagnostics, which allow the measurement of the

absorbed current through the specimen and of the surface temperature during tran-

sient and steady-state thermal loads (fast single color pyrometer, two-color pyrometer,

infrared camera). A digital camera is available as well to capture pictures during an

experiment.

Due to the small diameter of the e-beam in JUDITH 1 (1 mm diameter), especially

compared to the large loaded areas of our components (up to 445 mm2), the beam

was scanned with very high frequencies in order to generate heat load distributions

as homogeneous as possible. The beam was swept over the samples’ surfaces with a

triangular signal. Figure 3.10(a) shows the beam scanning pattern after 1 ms with beam

frequencies of fx=40 kHz and fy=31 kHz on an area of 445 mm2. The figure 3.10(b)

shows the resulting local power absorbed at the center of the scanned area as a function

of time for an acceleration voltage of 120 kV and a current of 100 mA. It can be seen

that the heat load distribution is not exactly homogeneous as it consists of a sequential

deposition of high power peaks up to 6 GW·m−2, higher than those of transient events

in fusion devices. However, in the frame of this study, we considered that the terms

“steady-state” or “thermal fatigue” referred to loads with power densities of the order of

tens of MW·m−2 and long pulse durations (several tens of s) and the terms “transient”

or “thermal shock” to loads with power densities of several hundreds of MW·m−2 and

short pulse durations (a few ms) (figure 3.11).

The absorbed power densities Pabs [W·m−2] were calculated according to equation 3.1.

Pabs =
U · I · ε

S
(3.1)

where I is the current [A], U the acceleration voltage [V], ε the absorption coefficient

for electrons, assumed to be 0.55 for W [131], and S the loaded surface’s area [m2].
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Figure 3.10. (a) Scanning pattern of the beam of JUDITH 1 after 1 ms with
scanning frequencies of 40 kHz (x-direction) and 31 kHz (y-direction); (b) resulting
local power densities absorbed at the center of the scanned area (position of the
blue point on (a)) as a function of time (with U = 120 kV and I = 100 mA). After
1 ms the full area (445 mm2 in the present simulation) is scanned but the scanning
is just fairly homogeneous as it consists of sequential depositions of power peaks.

Assuming that the beam has a Gaussian profile the local power density Plocal [W·m−2]

absorbed by the area just below the beam can be calculated using the formula 3.2.

Plocal =
U · I
2π · σ2

(3.2)

where σ is:

σ =
FWHM

2
√
2log(2)

(3.3)

and FWHM is the full-width half-maximum of the Gaussian shaped electron beam.

Figure 3.11. Scheme illustrating the loading types: “thermal fatigue” (or
“steady-state”) refer to loads with power densities of the order of tens of MW·m−2

and pulse duration of several s (e.g. 15 MW·m−2 for 20 s) and “transient” (or
“thermal shock”) to loads with power densities of several hundreds of MW·m−2

and pulse durations of a few ms (e.g. 500 MW·m−2 for 5 ms).
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The time t during which the power locally loads this area is calculated using the beam

velocity. As mentioned previously the beam velocity is governed by two frequencies (fx,

fy). As the distances dx and dy of the scanned (or loaded) area and the frequencies

are known the beam velocities (vx, vy) can be calculated according to equation 3.4.

The mean beam velocity is calculated using a vector sum of the x and y components

and the time the beam needs to go back and forth and therefore return to its starting

position can be determined.

v =
d

1/f
(3.4)

The product of
√
t and the local power density Plocal is called the heat flux factor (HFF)

(equation 3.5). This useful factor is used within the fusion community as an indicator

of damage thresholds of PFMs.

HFF = Plocal ·
√
t (3.5)

Table 3.3 shows the calculated HFF per component for U = 120 kV, fx=40 kHz and

fy=31 kHz, FWHM = 1 mm. The detailed testing parameters are given in sub-

sections 3.4.2 and 3.4.3.

Steady-state loads Transient loads
Comp. #1 Comp. #2-3 Comp. #2-3

Scanned area dim. dx/dy (mm) 10/23 10/44.5 5/5
Mean beam velocities v (m/s) 1635 2873 506

Dwell time t (μs) 0.61 0.35 2.0
Current I (mA) (1) 65, (2) 55, (3) 40 100 133

Abs. power density Pabs (MW/m2) (1) 19, (2) 16, (3) 11 15 500
Local power density Plocal (GW/m2) (1) 3.8, (2) 3.2, (3) 2.3 5.8 7.7

Heat flux factor (MW
√
s/m2) (1) 3.0, (2) 2.5, (3) 1.8 3.4 10.8

(1) 5 mm thick blocks (1200◦C), (2) 10 mm thick blocks (1600◦C), (3) 15 mm thick blocks (2000◦C)

Table 3.3. Calculated heat flux factors for the components.

The temperature rise ΔT during transient events is given by the following equation:

ΔT = 2Pabs

√
Δt

πρcpλ
(3.6)

where Δt is the pulse duration [s], λ the thermal conductivity [W·m−1·K−1], cp the

specific heat [J·kg−1·K−1] and ρ the density [kg·m−3] of the material [132]. This rep-

resents a solution for the unidirectional heat conduction equation and gives a rough

approximation without taking radiation cooling or evaporation into account.
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3.4.2 Thermal loading of cracked surfaces

The cracked specimens were subjected to cyclic steady-state thermal loads only. As

in the FE calculations, the three sets of specimens (5, 10 and 15 mm high) were

loaded independently. The power density was adjusted on each set to achieve the

desired surface temperatures (1200◦C, 1600◦C, 2000◦C); power densities of 19, 16 and

11 MW·m−2 were applied on the 5, 10 and 15 mm high blocks respectively. The

resulting surface temperatures, measured by two-color pyrometer, were in the ranges

of 1185-1208◦C (5 mm), 1590-1605◦C (10 mm) and 1992-2013◦C (15 mm). The cycling

was simulated by switching the beam on and off. The cycle duration was 20 s (15 s

beam on, 5 beam off) and the cycle number was 1000.

The cycle number was valued over the cycle duration, therefore the time the beam was

on (heating time) was reduced just enough to reach a thermal equilibrium (even at the

highest temperatures) and the time the beam was off was chosen to cool the samples

down to RT between each cycle. Due to cycling between RT and above 1000◦C the

DBTT of W was crossed periodically.

3.4.3 Thermal loading of defect-free (polished) surfaces

The polished specimens were subjected to cyclic steady-state thermal loads as well as

a single transient event, the latter being performed beforehand. The purpose of the

combined load was to introduce cracks in the materials and study the further develop-

ment of the damage under thermal fatigue loads in terms of (i) surface temperatures

and (ii) initial surface damage introduced by the thermal shock load. The strategy

was to apply the transient load on half of each block (5 by 5 mm2) and the cyclic

steady-state loads on the full surface (5 by 10 mm2) in order to compare both surfaces’

halves (figure 3.12). There were numerous investigations at FZJ that dealt with the

response of materials under thermal shock loads [95, 128, 133–143]. Based on these

former investigations the testing parameters for the transient load, an absorbed power

density of 0.5 GW·m−2 with a pulse duration of 5 ms applied at RT, were chosen to in-

duce cracks in the W surfaces. The temperature rise calculated using the equation 3.6

was about 1973,3 K (with Pabs=500.106 W·m−2, Δt=5.10−3 s, λ=161.53 W·m−1·K−1,

cp=131.45 J·kg−1·K−1, ρ=19250 kg·m−3), well below the melting threshold of W.

For the testing under cyclic steady-state thermal loads the approach differed than that

employed for component #1 as the power density was fixed at 15 MW·m−2 to avoid

set-up variations, in particular the variation of the e-beam scanning scheme. The cycle

duration was 20 s (15 s beam on, 5 beam off) and the cycle numbers were 50 and 1000

cycles to investigate the damage resistance (damage threshold, damage development

rate) of the W materials.
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Figure 3.12. Schematic view of the loading scheme applied to components #2
and #3. Half of each surface was subjected to one thermal shock load whereas
the full surface was subjected to the thermal fatigue loads.

Two components were necessary to test the materials at two cycle numbers. For com-

ponent #2 (1000 cycles) the experimental surface temperatures were about 1000◦C,
2000◦C and 2200◦C on the 5, 10, and 15 mm high blocks respectively and for com-

ponent #3 (50 cycles) about 1900◦C and 2600 ◦C on the 10 and 15 mm high blocks

respectively (the 5 mm thick blocks were not tested). The surface temperature on the

highest blocks (15 mm) was particularly high because the pyrometer was positioned

on a overheating block (the second one starting from the bottom, the 12 mm diameter

rod as shown in figure 3.13). The infrared camera indicated that the temperature of

the other blocks was 200◦C to 300◦C lower. Thus, the temperature range was about

2300 to 2600◦C on the 15 mm thick specimens.

Figure 3.13. Infrared image of component #3 during the steady-state thermal
loading of the 15 mm blocks (first cycle). The pyrometer indicated a abnormal
surface temperature of about 2600◦C because it was set on an overheating block
(the second block from the bottom).
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3.5 Results

To analyse the surfaces after thermal loads, metallography and material characterisa-

tion were performed, in particular the crack pattern was characterised using parameters

such as the crack distance, crack width and crack depth (figure 3.14).

Figure 3.14. Parameters used to characterise the crack pattern.

To measure the crack distance, five equally distanced measurement lines were drawn

on pictures of the samples’ top surface. Crack distances were measured along each line

and then averaged (figure 3.15(a)). The average crack width was determined using

the same method (figure 3.15(b)). The crack depth was measured on pictures of the

samples’ cross section and the measured values were then averaged (figure 3.15(c)).

Figure 3.15. Once the top surface of the sample was captured, equally distanced
lines were drawn on the picture to measure along the lines (a) crack distances and
(b) crack widths. (c) Crack depths were measured on pictures of the cross section
and the measured values were then averaged.

3.5.1 Surfaces pre-cracked by electric discharge machining

Before thermal loads (as-machined)

Figure 3.16 shows the materials’ surfaces (top surfaces) after EDM. As observed in the

He-cooled PFCs for DEMO (chapter 2), discrete cracks occurred in W surfaces. The

mechanisms leading to crack formation by EDM were described in [127]. The crack

pattern was characterised by a network of curved cracks on the one hand (indicated

on the figure by red dotted lines) and discontinuous straight cracks within the areas
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marked by the continuous curved cracks on the other hand (indicated by purple arrows).

Thus, the crack pattern formed by EDM was characterised by those two distinct types

of crack. The crack width was about 5 μm.

Figure 3.16. BSE micrographs of the as-machined surfaces (top surfaces) show-
ing cracks induced by EDM. The crack pattern was characterised by two different
types of crack: continuous curved cracks (red dotted lines) and discontinuous
straight cracks (purple arrows). Dirt remained from the wire and the electrolyte
employed during the EDM process.

In the 12 mm diameter rod (the smallest rod diameter), the straight cracks were tiny

and their crack width was very narrow (less than ∼2 μm). In the 80 mm diameter rod

(the biggest rod diameter), straight cracks formed clear punctual networks.

Different types of crack were induced by the same machining process, EDM. Obviously,

the cause for the formation of different crack types lied in the microstructure of the

material. To understand the process of crack formation in W by EDM, the crack dis-

tance was measured in two different ways: considering (1) the continuous curved cracks

only (as shown in figure 3.17) and (2) both the continuous curved and discontinuous

straight cracks (i.e. all cracks). Table 3.4 shows the resulting average crack distances

and respective standard deviations. As the discontinuous straight cracks were very tiny
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Figure 3.17. SEM micrograph of an as-machined area of the Plansee 60 mm
diameter rod showing how the measurement of the crack distance was performed
when considering continuous curved cracks only.

and hardly visible in the Plansee 12 mm diameter rod, only the crack distance con-

sidering the continuous curved cracks was measured for this material. It was observed

Average crack distances (in μm)
Materials Curved cracks only Curved and straight cracks
Plansee rod Ø 12 mm None 30±14
Plansee rod Ø 30 mm (1)66±34/(2)106±53 (1)66±38/(2)63±36
Plansee rod Ø 60 mm 127±58 59±33
Plansee rod Ø 80 mm 220±141 80±47

Average crack distance on (1) the small grain area and (2)the large grain area of the
material

Table 3.4. Average crack distances of the as-machined surfaces considering on
the one hand curved continuous cracks only and on the other hand all cracks.
Considering curved cracks only, the crack distance increased with the rod diameter,
whereas the overall crack distance increased first, and then stabilized.

that the larger the rod diameter, the larger the crack distance of the curved cracks

only, whereas the overall crack distance (including all cracks) increased with the rod

diameter up to 30 mm and then became relatively (i.e. taking standard deviations into

account) stable. It was shown in section 3.2 that within the Plansee rods the grain size

also increased with the rod diameter (see table 3.1). Thus, the selective crack distance

measurements indicated that the curved cracks might occurred along grain boundaries

(inter-granular cracks) whereas the straight cracks might occurred inside the grains

(intra-granular cracks). Cracks that occurred at grain boundaries, where the strength
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of the material was low, propagated around the grains, forming a network, whereas

cracks that occurred inside the grains were discontinuous.

Cracks induced by EDM, independently of their type, showed a shallow crack depth

as shown in table 3.5. The cracks were mainly perpendicular to the machined surface

as shown in figure 3.18. A few particles were eroded due to crack propagation around

the grains.

Materials Average crack depths (in μm)
Plansee rod Ø 12 mm 32±6
Plansee rod Ø 30 mm 28±9
Plansee rod Ø 60 mm 33±13
Plansee rod Ø 80 mm 28±20

Table 3.5. Average crack depth of the as-machined surfaces (the values of stan-
dard deviation are also indicated). The cracks induced by EDM were shallow.

Figure 3.18. Optical micrographs of the cross sections of the as-machined sur-
faces showing the orientation of the cracks, mainly perpendicular to the machined
surfaces.

After thermal loads

The component #1 was tested up to 1000 cyclic thermal loads. However, it was re-

moved from JUDITH 1 after 50, 100, 200, 500 and 1000 cycles for metallographic

examinations of the loaded surface to study the development of the surface modifi-

cations induced by thermo-mechanical stresses. After 50 cycles at 1200◦C the loaded

surfaces and the as-machined surfaces showed the same crack patterns, indicating that

the thermal stresses induced by the electron beam loading had no impact on the crack

pattern formed after machining. Thus, after thermal loads the crack pattern was still

characterised by two crack types (continuous curved cracks and discontinuous straight

cracks) as shown in figure 3.19.
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Figure 3.19. BSE micrographs of the pre-cracked surfaces after 50 cyclic ther-
mal loads at 1200◦C. The crack pattern was the same to that observed just before
thermal loading (i.e. after EDM); characterised by continuous curved cracks (red
dotted lines) and discontinuous straight cracks (purple arrows). The stresses in-
duced by thermal fatigue had no impact on the way cracks formed.
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Figures 3.20, 3.21, 3.23 and 3.25 show the loaded surfaces of the materials (12, 30, 60

and 80 mm diameter rods respectively) after 200, 100 and 1000 cycles at all surface

temperatures (1200, 1600, 2000◦C). As observed after 50 cycles (figure 3.19), the crack

pattern did not change compared to that of the as-machined surfaces (figure 3.17)

despite the accumulation of thermal stresses due to the increase of the cycle number

and temperature.

However, the 30 and 60 mm diameter rods (figures 3.21 and 3.23) showed crack opening

at the highest surface temperature (2000◦C). Before thermal loads, the crack width was

less than 5 μm in both materials. The crack width increased between 100 cycles and 500

cycles reaching a maximum value of 11 μm in the 30 mm diameter rod (figure 3.22)

while it increased linearly with the cycle number and reached a maximum value of

26 μm after 1000 cycles in the 60 mm diameter rod (figure 3.24).

Figure 3.20. BSE micrographs of the loaded areas of the 12 mm diameter rod
at various cycle numbers and surface temperatures. The crack pattern showed no
variation despite changes in the cycle number and temperature.
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Figure 3.21. BSE micrographs of the loaded surfaces of the 30 mm diameter
rod at various cycle numbers and surface temperatures. In general, the crack
pattern showed no variation despite changes in the cycle number and temperature.
However, crack opening (indicated by the arrows) occurred at 2000◦C.

Figure 3.22. Maximal crack width as a function of the cycle number in the 30
mm diameter rod. Crack opening occurred at 2000◦C after 100 cycles and the
crack width increased up to 11 μm, remaining constant after 500 cycles.
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Figure 3.23. BSE micrographs of the loaded areas of the 60 mm diameter
rod at various cycle numbers and surface temperatures. In general, the crack
pattern showed no variation despite changes in the cycle number and temperature.
However, crack opening (indicated by the arrows) occurred at 2000◦C.

Figure 3.24. Maximal crack width as a function of the cycle number in the 60
mm diameter rod. Crack opening occurred at 2000◦C. The crack width increased
linearly with the cycle number, reaching up to about 26 μm after 1000 cycles.
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Figure 3.25. BSE micrographs of the loaded surfaces of the 80 mm diameter rod
at various cycle numbers and surface temperatures. The crack pattern showed no
variation despite changes in the cycle number and temperature.

The crack distance was measured on the loaded surfaces after several cycles numbers

(50, 100, 200, 500, 1000 cycles) at all surface temperatures. Table 3.6 shows the

resulting average crack distances with standard deviations. In general, like the crack

pattern, the crack distance showed no variation despite changes in the cycle number and

temperature. Actually, the crack distance was in the same range as that measured in

the as-machined samples (table 3.4), indicating that after crack formation by machining

no additional cracks formed under thermal fatigue loads (i.e. the crack density was

constant).

The crack distance varied more significantly in the 30 mm diameter rod than in other

materials but as this material was originally (i.e. before thermal loading) characterised

by two specific grain sizes, this variation was probably directly related to the mi-

crostructure of the material rather than an impact of the thermal loading.

After 1000 cycles component #1 was cut perpendicular to the loaded surface for cross

section analysis (figure 3.26). The cracks were mainly perpendicular to the loaded

surface (like in the as-machined surfaces).



Results 63

A
ve
ra
ge

cr
ac
k
d
is
ta
n
ce
s
(i
n
μ
m
)

P
la
n
se
e
ro
d
Ø
12

m
m

P
la
n
se
e
ro
d
Ø
30

m
m

P
la
n
se
e
ro
d
Ø
60

m
m

P
la
n
se
e
ro
d
Ø
80

m
m

C
y
cl
e
n
u
m
b
er

12
00

◦ C
16
00

◦ C
20
00

◦ C
12
00

◦ C
16
00

◦ C
20
00

◦ C
12
00

◦ C
16
00

◦ C
20
00

◦ C
12
00

◦ C
16
00

◦ C
20
00

◦ C
50

cy
cl
es

31
±1

5
24
±1

3
20
±8

52
±3

2
60
±4

4
28
±1

7
67
±4

2
53
±2

8
63
±4

5
63
±2

9
70
±4

1
87
±3

7
10
0
cy
cl
es

29
±1

3
21
±1

1
26
±1

1
71
±4

4
40
±3

2
33
±2

2
91
±4

6
61
±2

5
66
±3

6
68
±3

5
90
±4

6
80
±3

6
20
0
cy
cl
es

25
±1

2
24
±1

1
20
±1

1
56
±3

1
40
±2

9
47
±3

3
55
±3

4
52
±3

6
45
±2

6
56
±2

7
60
±2

8
66
±4

1
50
0
cy
cl
es

31
±1

3
22
±1

0
26
±1

4
92
±4

4
62
±4

3
32
±2

3
49
±3

3
59
±2

8
65
±3

8
57
±3

0
72
±4

7
76
±4

0
10
00

cy
cl
es

28
±1

4
22
±1

2
25
±1

1
54
±3

1
38
±3

0
38
±2

8
60
±3

1
62
±3

2
52
±2

4
75
±4

4
68
±2

8
67
±3

4

T
a
b
le

3
.6
.
A
ve
ra
ge

cr
ac
k
d
is
ta
n
ce
s
of

th
e
lo
ad

ed
su
rf
ac
es
.
T
h
e
cr
ac
k
d
is
ta
n
ce

d
id

n
ot

va
ry

d
es
p
it
e
ch
an

ge
s
in

th
e
cy
cl
e
n
u
m
b
er

an
d
te
m
p
er
at
u
re
,
in
d
ic
at
in
g
th
at

on
ce

cr
ac
k
s
w
er
e
fo
rm

ed
b
y
E
D
M

n
o
ad

d
it
io
n
al

cr
ac
k
s
w
er
e
in
d
u
ce
d
b
y
th
er
m
al

fa
ti
gu

e
in
d
u
ce
d

st
re
ss
.



64 Performance of tungsten grades under steady-state thermal loads

Figure 3.26. Optical micrographs of the cross sections of the pre-cracked sur-
faces after exposure to 1000 cyclic thermal loads showing that cracks were mainly
perpendicular to the loaded surface.

The 60 mm diameter rod was severely degraded at 2000◦C. On top of crack opening

(figure 3.24), cracks, which occurred at the grain boundaries, propagated around the

relatively large grains of the material and then enlarged at random places inside of the

bulk resulting in cavities formation (figure 3.27). The crack depth reached hundreds

of mm.

In the other materials, the crack depth was shallow (∼20-30 μm). The table 3.7

summarizes the crack depth values measured in as-machined and loaded surfaces. It

can be seen as the crack depth was the same before and after thermal loading, the

accumulation of thermal stresses by cycling and the increase of the temperature did

not induce enough stresses for cracks to proceed.
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Figure 3.27. Optical micrograph of the cross section of the 60 mm diameter rod
after 1000 cycles at 2000◦C showing a heavy degradation of this material.

Average crack depths (in μm)
Materials As-machined 1200◦C 1600◦C 2000◦C
Plansee rod Ø 12 mm 32±6 25±4 17±4 19±1
Plansee rod Ø 30 mm 28±9 28±7 40±1 24±13
Plansee rod Ø 60 mm 33±13 27±4 19±8 heavily damaged
Plansee rod Ø 80 mm 28±20 36±9 35±4 22±8

Table 3.7. Average crack depths of cracked surfaces before and after exposure to
cyclic thermal loads (1000 cycles). The crack depth remained shallow. The crack
depths of the materials were similar.

Grain growth was observed at 1600◦C in the 12 and 30 mm diameter rods and at

2000◦C in the 60 and 80 mm diameter rods (figure 3.28). The cross section views of

the samples after etching showed that for all testing conditions both inter- and intra-

granular cracks were observed; cracks occurred in the surfaces regularly regardless of

the grain boundaries and grain growth, probably because they were induced before

thermal loads.
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Figure 3.28. Optical micrographs (after etching) of the cross sections of the
loaded surfaces. Cracks occurred at regular intervals independently of the grain
growth. Thus, both inter- and intra-granular cracks were observed.

Summary

Before thermal loads, cracks were induced in W surfaces by EDM. A characteristic

crack pattern was generated with on the one hand continuous curved cracks and on

the other hand discontinuous straight cracks. It has been observed that like the grain

area, the crack distance of the continuous curved cracks increased with the rod diam-

eter whereas the crack distance of both continuous curved and discontinuous straight

cracks slightly increased first and then saturated. It indicated that the continuous

curved cracks probably occurred at the grain boundaries (inter-granular cracks) while

the discontinuous straight cracks occurred inside the grains (intra-granular cracks).



Results 67

Cracks that occurred at grain boundaries, where the strength of the material was low,

propagated around the grains, forming a network, whereas cracks that occurred in-

side the grains, where the strength of the material is higher, were stopped in their

propagation.

After thermal loads, the accumulation of thermal stresses due to cycling and the in-

crease of the temperature had in general no impact on damage development: the crack

pattern (crack formation), the crack distance (crack density) and the crack depth (crack

propagation). The thermal stresses induced by the electron beam loading were not high

enough for additional cracks to form and for cracks to proceed. This effect was probably

related to the stress relaxation provided by the cracks formed by machining (EDM).

The Plansee materials performed relatively similar, except the 60 mm diameter rod

which showed a lower resistance by the electron beam induced thermal stresses at high

temperature (2000 ◦C). Crack opening and important crack propagation were observed

in this material.

3.5.2 Surfaces prepared by polishing

Before thermal loads (polished)

The cutting of the samples by EDM induced shallow cracks in their surfaces as shown

previously. To remove the cracks, the samples surfaces were polished after cutting.

A surface finishing such as polishing enabled to remove 100 to 500 μm thick material

layers, thus guaranteeing crack-free surfaces (cracks induced by EDM are 30 μm deep)

as shown in figure 3.29.

Figure 3.29. BSE image of a tungsten surface (here, the Plansee rod with a
diameter of 30 mm) after polishing showing no defects.



68 Performance of tungsten grades under steady-state thermal loads

After thermal fatigue loads

Note: the Plansee rod with a diameter of 60 mm showed a particular thermal response

described separately and further in this report.

The surfaces exposed to 1000 steady-state thermal loads at 1000◦C showed no damages

(figure 3.30). The thermal stresses induced by thermal fatigue loads did not exceed

the strength of W because the surface temperature was too low.

Figure 3.30. BSE images of the loaded surfaces after 1000 cycles at 1000◦C
showing no damages as the temperature was too low to generate stresses high
enough for the material to fail.

After 50 cycles at 1900◦C, cracks due to thermal fatigue were observed on the loaded

surfaces as shown in figure 3.31(a). The mechanisms leading to crack formation under

thermal stresses generated by electron bombardment are described in the introduction

(see section 1.7). Beside cracking, surface roughening also occurred on the loaded

surfaces except in the rolled plate (figure 3.31(b)). Roughening resulted in a change

of the materials reflectivity which became visible by a darkening of the loaded area.

On top of cracking and roughening, the Polema forged plate showed particle erosion

(grain loss) and surface melting (figure 3.31(c)). Particle erosion was due to crack

propagation around the grains, which were then ejected. Some grains were just partially

disconnected from the rest of the bulk but it was enough for cracks to act as thermal

barriers and lead to surface melting. Melting was indicated by wavelets on the grains

and small W fragments that piled up at the cracks edges forming like tiny walls on the

cracks contours. All loaded surfaces tested up to 50 cycles at particularly high surface

temperatures (∼2300-2600◦C) showed cracking and roughening (figure 3.32).
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Figure 3.31. SEM micrographs of the loaded areas after 50 cycles at 1900◦C
showing (a) cracking and roughening (e.g. 80 mm diameter rod) as it happened
in almost all materials, (b) cracking only in the rolled plate, and (c) cracking,
roughening, particle erosion and surface melting in the forged plate.

Figure 3.32. SEM micrographs of the loaded areas after 50 cycles at tempera-
tures above 2300◦C. Such extreme temperatures induced cracking and roughening
in all materials.

After 1000 cycles at 2000◦C the loaded surfaces showed a similar degradation tendency

as that observed after 50 cycles at almost the same temperature, namely 1900◦C:
cracking and roughening in all rods (figure 3.33(a)), cracking in the rolled plate (fig-

ure 3.33(b)), and cracking, particle erosion as well as melting in the forged plate (fig-

ure 3.33(c)). The increase of the cycle number led to crack propagation around the

Figure 3.33. SEM micrographs of the loaded areas after 1000 cycles at 2000◦C
showing (a) cracking and roughening (e.g. 12 mm diameter rod) as it happened
in the rod materials, (b) cracking and particle erosion in the rolled plate, and (c)
cracking, particle erosion, and melting in the forged plate.
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grains, even in the rolled plate (which also showed a crack network). However, even

after 1000 cycles, this material showed no roughening, indicating that it has a higher

roughening threshold compared to the other materials.

On top of the damages observed at 2000◦C (cracking, roughening, and melting), the

increase of the temperature up to 2200◦C led to material lifting (figure 3.34(a)). After

1000 cycles at 2200◦C, the rolled plate also showed surface roughening (figure 3.34(b)).

The forged plate showed surface melting again (figure 3.34(c)).

Figure 3.34. SEM micrographs of the loaded areas after 1000 cycles at 2200◦C.
The increase of the temperature from 2000 to 2200◦C led to (a) material lifting
on top of roughening and cracking (e.g. Plansee 80 mm diameter rod) in the rod
materials, (b) roughening in the rolled plate, and (c) completely molten grains in
the forged plate.

In general, the crack patterns after 50 and 1000 cycles were similar: cracks induced

by thermal fatigue were curved and formed a network on the whole loaded surface

(figure 3.35). Cracks followed the grain orientation on the loaded surface and as a

result they tended to describe circles in the rods and the forged plate, which had

no preferential grain orientation, while they were parallel to each others in the rolled

plate, which showed a strong grain orientation. The rolled plate was the only material

showing discontinuous cracks after 50 cycles at 1900◦C, indicating a higher resistance

to crack propagation.

The average crack distances after 50 cycles at 1900◦C and after 1000 cycles (at 2000

and 2200◦C) were in the same range (table 3.8). The accumulation of thermal stresses

induced by cycling combined to the slight increase of the surface temperature (between

100 and 300◦C depending on the samples’ thickness) showed no impact on the crack

distance (nor the crack pattern). However, smaller crack distances (i.e. higher crack

densities as the loaded area was identical for all samples) were measured in the samples

tested at temperatures above 2300◦C. Thus, the increase of the temperature above

2200◦C increased the crack formation. The crack patterns of the surfaces subjected to

50 cycles at very high temperatures (∼2300-2600◦C) are shown in figure 3.36. Crack

widths up to 15 μm were measured on these surfaces (versus 2.4 μm in the other testing

conditions).
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Figure 3.35. BSE micrographs of the loaded areas after 50 cycles (1900◦C) and
1000 cycles (2000◦C and 2200◦C) showing crack network formed by the thermal
fatigue induced cracks. Cracks followed the grain orientation on the loaded surface
and therefore had no preferential orientation except in the rolled plate (cracks
almost parallel to each others). The crack width was about 2.4 μm.
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Average crack distances (in μm)
50 cycles 1000 cycles

Materials 1900◦C ≥2300◦C 2000◦C 2200◦C
Plansee rod Ø 12 mm 101±48 63±24 78±42 76±40
Plansee rod Ø 30 mm 92±36 66±25 72±44 79±45
Plansee rod Ø 80 mm 174±101 35±24 246±122 179±37
Polema rod Ø 30 mm 74±40 44±15 73±32 65±29
Polema plate (forged) 42±19 22±12 63±43 38±14
Polema plate (rolled) 21±12 30±14 26±11 16±6

Table 3.8. Average crack distances of the loaded surfaces. The accumulation of
thermal stresses induced by cycling and the increase of the surface temperature
had no impact on the crack distance (i.e. the crack density), except at extreme
temperatures (i.e. ≥2300◦C).

Figure 3.36. BSE micrographs of the loaded areas after 50 cycles above 2300◦C.
Due to the very high temperatures achieved on those surfaces, the crack density
was particularly high and crack opened (crack width up to 15 μm)

.

Two cuts were performed in components #2 and #3 for cross section analysis: one

through the side subjected to thermal fatigue loads only and one through the side

subjected to the combined thermal load (figure 3.37). The cracks due to thermal fatigue

occurred at grain boundaries as shown in the cross section views (figure 3.38). Thus,

the increase of cycle number and surface temperature did not induce the formation of

intra-granular cracks. However, the accumulation of thermal stresses by cycling had

an impact on the crack depth, which increased with the cycle number. The average

crack depths after 50 and 1000 cycles are shown in in table 3.9.
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Figure 3.37. Two cuts were performed in components #2 and #3 for cross
section examinations, one in the side exposed to thermal fatigue loads only and
one in the side subjected to the combined thermal load.

Figure 3.38. Optical micrographs of the cross sections of the loaded areas. The
cracks induced by thermal fatigue were inter-granular, under all testing conditions.
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At 50 cycles the increase of the temperature (from 1900 to more than 2300◦C) showed no

impact on the crack depth. The same observation was made at 1000 cycles. Therefore,

the accumulation of thermal stresses at the crack tips caused by cycling was probably

the main reason for crack propagation. Thermal strain at the crack tips caused cracks

to grow further.

Average crack depths (in μm)
50 cycles 1000 cycles

Materials 1900◦C ≥2300◦C 2000◦C 2200◦C
Plansee rod Ø 12 mm 25±10 37±22 98±27 53±21
Plansee rod Ø 30 mm 21±8 26±8 43±18 36±11
Plansee rod Ø 80 mm 15±7 17±6 73±27 47±15
Polema rod Ø 30 mm 8±2 17±7 54±20 49±17
Polema plate (forged) 40±10 21±6 49±14 45±15
Polema plate (rolled) 6±3 5±6 23±12 53±13

Table 3.9. Average crack depths after 50 and 1000 cyclic thermal loads. The
crack depth showed a tendency to increase with the cycle number due to the
accumulation of stresses at the crack tips (the temperature variation at 50 and
1000 cycles showed no impact on the crack depth).

The 12 mm diameter rod showed a abnormal high crack depth after 1000 cycles at

2000◦C because the sample was overheating as shown in figure 3.46 in section 3.5.3

probably due to a defective bond between the block and the heat sink. The rolled

plate showed the smallest crack depth in general and consequently the highest resis-

tance to crack propagation. The crack depth of all other materials was in a range of

about 45 to 55 μm.

Once inter-granular cracks formed, they showed a tendency to propagate with increas-

ing the cycle number. Cracks propagated along the grain boundaries and consequently

followed the direction of the grain deformation. In the rods, the grain size was rela-

tively large compared to the crack propagation range (or depth) therefore, most of the

cracks were vertical (figure 3.39). When the crack propagation range was larger than

the grain size, cracks propagated horizontally, which led to ejection of particles, hence

the particle erosion observed in the plates in which the grain size was small, even after

grain growth. The rolled plate, which had a higher resistance to crack propagation,

showed a lower erosion than the forged plate.
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Figure 3.39. BSE micrographs of the cross sections of the loaded surfaces. Inter-
granular cracks tended to follow the grain orientation during propagation. In the
rods, the crack propagation range was smaller than the grain size and therefore,
the cracks propagated perpendicular to the loaded surface. In the plates, the
grain size was relatively small and as a result, the cracks propagated horizontally,
ejecting grains.

Due to the high temperatures achieved during thermal loads the materials starting

recrystallisation as shown in figures 3.40 and 3.41 (the pictures were tilted of an angle

±90◦C, i.e. the loaded surface is vertical, and as it was necessary to take several

pictures to make a panorama of the blocks, different contrasts could appear during the

transition from a picture to an other; the arrows indicate the grain growth depth).
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Figure 3.40. Optical micrographs of the cross sections of the loaded blocks after
50 cycles showing grain growth in almost all materials. The arrow indicates the
depth up to which grain growth occurred. The forged plate showed the highest
grain growth depths. The rolled plate and the 80 mm diameter rod did not
recrystallise after 50 cycles at 1900◦C.
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Figure 3.41. Optical micrographs of the cross sections of the loaded blocks after
1000 cycles showing grain growth in all materials. The arrow indicates the depth
up to which grain growth occurred. The forged plate showed the largest grain
growth ranges whereas the rolled plate and the 80 mm diameter rod showed the
smallest ones.
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The grain growth depths are shown in table 3.10. After 50 cycles at temperatures

above 2300◦C the grain growth depths were smaller than those observed after 1000

cycles at lower temperatures (below 2200◦C), indicating that the recrystallisation was

not complete after 50 cyclic thermal loads despite high temperatures. As a result,

the recrystallisation temperature (RCT) could not be directly determined even after

1000 cycles. However, it has been observed that the grain growth per material showed

the same tendency under all testing conditions. Thus, the forged plate showed the

largest grain growth range, whereas the rolled plate and the 80 mm diameter rod

showed the smallest ones. Furthermore, no grain growth was observed in those two

materials after 50 cycles at 1900◦C. The 12 and 30 mm rods (both Plansee and Polema

materials) showed an intermediate grain growth range. As some samples overheated

during thermal loads, a clear statement on the recrystallisation effects in those materials

could not be made, but based on the tendency observed, the Polema rolled plate and

the Plansee 80 mm diameter rod materials had probably the lowest RCT and the forged

plate the highest one.

Grain growth depth (in mm)
50 cycles 1000 cycles

Materials 1900◦C >2300◦C 2000◦C 2200◦C
Plansee rod Ø 12 mm 1.6 4.8 2.5 5.3
Plansee rod Ø 30 mm 1.8 4.4 1.3-2.8 5.8
Plansee rod Ø 80 mm None 2.8 1.5 3.1
Polema rod Ø 30 mm 2.0 4.1 3.1 5.2-6.7
Polema plate (forged) 3.8 6.4 4.7 7.4
Polema plate (rolled) None 2.7 1.2 4.1

Table 3.10. Depths of grain growth after cyclic thermal loads. The grain growth
per material showed the same tendency under all testing conditions. The largest
range was observed in the forged plate and the smallest range in the 80 mm
diameter rod and rolled plate. The grain growth depths increased with the cycle
number and reached maximum values after 1000 cycles although the temperatures
were lower (≤2200◦C) than those during the 50 cyclic thermal loads (≥2300◦C).

The 12 and 30 mm diameter rod materials, which had similar grain areas before thermal

loads (table 3.1 and figure 3.1 in section 3.2), showed similar grain growth ranges. The

80 mm rod, which originally (i.e. before thermal loads) had bigger grain areas compared

to the 12 and 30 mm diameter rod materials, showed a smaller grain growth range.

The grain area (the grain size in general) could be related to grain growth; the larger

the grain size, the smaller the grain growth depth. However, the rolled plate had one

of the smallest grain areas and also the smallest grain growth depth. Therefore, the

mechanical treatment (i.e. the deformation level during material production) must

play the dominant role in the grain growth resistance.



Results 79

The 60 mm diameter rod showed a particular surface aspect after 50 cycles at 1900◦C
characterised by (1) an inhomogeneous crack distribution and (2) localised surface

melting. The loaded surface could be divided into three regions in terms of surface

modification (figure 3.42(a)): region A where cracks only were observed, region B

where cracks and surface melting were observed (figure 3.42(b)), and region C without

visible surface damage. As shown in figure 3.42(c), the cracks were more apparent

in region B than in region A because they were slightly deeper as shown in the cross

section views (figure 3.42(d)).

Figure 3.42. (a) and (b) SEM micrographs of the loaded areas of the 60 mm
diameter rod (50 cycles, 1900◦C) showing three distinct regions in terms of sur-
face damage: region A (cracks), region B (cracks and melting) and region C (no
damage). (c) BSE micrograph of the same surface showing wider cracks in region
B than in region A. (d) Optical micrographs of the cross section showing deeper
cracks in region B than in region A.

In the component’s design and fabrication, the blocks #1 (60 mm diameter rod) and

#7 (rolled plate) were positioned at the edges of the samples’ set. Since no damage

was observed on region C, it was assumed that this region was not scanned by the e-

beam during the tests. This assumption is reinforced by the fact that region B showed

melting, and therefore was overheating as a result of the increased beam loading in the

turn-around region of the beam as shown schematically (figure 3.43). Furthermore,

it has been observed during the tests that the edge of the adjacent blocks set (the
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15 mm thick blocks) was heated, indicating a shift of the loading pattern towards the

adjacent block set (the same artefact was observed during the 1000 cyclic thermal loads

at 2200◦C).

Figure 3.43. Sketch illustrating the sample’s overloading in the turn-around
region of the electron beam where its dwell time is higher. The overheating in
the turn-around region of the electron beam was absorbed by region B, hence the
latter showed heavier damages than region A. The electron beam turned before
region C, which was not thermally loaded.

Figure 3.44(a) shows the loaded surface after 1000 cycles at 2000◦C. Several damage

types were observed: (1) surface roughening due to plastic deformation, (2) surface

cracking due to tensile forces, (3) particle erosion on the crack path, and (4) material

lifting (figure 3.44(a)). Furthermore, cracks opened, reaching an average crack width of

Figure 3.44. (a) SEM micrograph of the loaded surface of the 60 mm diame-
ter rod after 1000 cycles at 2000◦C showing particle lifting and erosion, surface
roughening and cracking as well as crack opening. (b) BSE micrograph of the cross
section of the respective area showing the crack depth, which reached hundreds of
micrometers.

about 11 μm and a maximal value of about 23μm. Crack opening took place down to a

depth of about 30 μm (average value) as shown in the cross section view (figure 3.44(b)).
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The crack depth reached hundreds of micrometers after cracks propagation around the

comparably large grains.

At higher temperature (2200◦C) the same types of damage were observed; although

this was not clear from the top view, the cross section view of the loaded surface showed

crack opening (figure 3.45). Due to the increase of temperature the crack opening took

Figure 3.45. (a) SEM and (b) BSE micrographs of the loaded areas (top and
cross views respectively) of the 60 mm diameter rod after 1000 cycles at 2200◦C
showing similar but larger damages than those observed at 2000◦C.

place down to a greater depth (∼170 μm, average value). Such crack opening and prop-

agation were not observed after 50 cycles, even at the highest temperature ( ∼2600◦C)
as shown before in figure 3.36. Therefore, the increase of the cycle number caused the

crack enlargement.

A similar degradation was observed in the pre-cracked sample at the highest surface

temperature and cycle number (figures 3.23 and 3.27 in section 3.5.1). This material

showed a limited strength under sever loading conditions (1000 cycles, surface temper-

ature ∼2000◦C).

Summary

During thermal fatigue loads, cracks occurred in the loaded surfaces due to thermo-

mechanical stresses induced by the electron beam. The cracking threshold was below

50 cycles at 1900◦C. Cracks due to thermal fatigue loads occurred along grain bound-

aries. Consequently, cracks followed the grain orientation on the loaded surface (formed

curved cracks networks in rods and the forged plate and straight lines in the rolled

plate).

The continuous stresses accumulation due to the cycle and temperature increase had

no impact on the crack pattern (i.e. crack formation) nor the crack distance (i.e. crack

density) in general (below 2200◦C). However, the crack depth (i.e. crack propagation)

increased with the cycle number. In rod materials, the grain size was large compared to

the crack propagation range, and the cracks, which followed the direction of the strong
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grain deformation during propagation, were perpendicular to the loaded surface. In

the forged plate, the crack propagation range was larger than the grain size and led to

crack propagation parallel to the surface and particle erosion.

The W grades showed differences in terms of roughening, cracking, particle erosion

and grain growth resistances (damage threshold, damage development rate), which are

highlighted in the conclusion of this work.

3.5.3 Comparison of pre-cracked and polished surfaces after

thermal loads

Note: this comparative study involved the Plansee materials only.

The table 3.11 summarizes the average crack distances measured in the polished sur-

faces after 1000 cycles at 2000◦C (∼15 MW·m−2) as well as in the pre-cracked surfaces

after 1000 cycles at 1600◦C (∼16 MW·m−2) and 2000◦C (∼11 MW·m−2). At simi-

Average crack distances (in μm)
Polished surfaces Pre-cracked surfaces

Materials 2000◦C, 15 MW·m−2 1600◦C, 16 MW·m−2 2000◦C, 11 MW·m−2

Plansee rod Ø 12 mm 78±42 22±12 25±11
Plansee rod Ø 30 mm 72±44 38±30 38±28
Plansee rod Ø 60 mm 188±79 62±32 52±24
Plansee rod Ø 80 mm 246±122 68±28 67±34

Table 3.11. Average crack distances in pre-cracked and polished surfaces after
1000 cyclic thermal loads. The average crack distance was lower in the pre-cracked
specimens than in the polished specimens altough the latters were subjected to
higher stresses by thermal fatigue.

lar power densities (∼15-16 MW·m−2), the pre-cracked specimens showed lower crack

distances (i.e. higher crack densities) than the polished samples although the latter

have been tested at a higher surface temperature (∼2000◦C versus ∼1600◦C). Mak-

ing another comparison, based this time on the same surface temperature (∼2000◦C),
pre-cracked specimens showed again higher crack densities than the polished sam-

ples although they have been tested at a lower power densities (∼15 MW·m−2 versus

∼11 MW·m−2), and therefore exposed to less stresses. Therefore, the EDM process

induced more cracks than the cyclic thermal loading (under the present testing con-

figuration and conditions: power density below 15-16 MW·m−2, surface temperature

below 2000◦C, and 1000 cycles).

In the 12 mm diameter rod material prepared by polishing the surface temperature

was higher than 2000◦C during the tests because the block was overheating as shown

in figure 3.46. However, despite the particularly high temperature on this sample,

the crack distance was still higher (i.e. the crack density was lower) than that of the

pre-cracked specimen.
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Figure 3.46. Infrared image of the polished specimens (10 mm thick) during
cyclic thermal loads (1000 cycles at 2000◦C). The 12 mm diameter rod material
(block #2) was overheating due to a defective bond to the heat sink.

The crack pattern of the polished surfaces was characterised by continuous curved

cracks only after thermal fatigue loads (1000 cycles), whereas that of the pre-cracked

surfaces was characterised by continuous curved cracks and discontinuous straight

cracks (figure 3.47). Consequently, the crack pattern was less heaped in the polished

surfaces (in particular in the 12 mm diameter rod material). Networks formed by dis-

continuous straight cracks such as those observed on the pre-cracked surface of the 80

mm diameter rod never occurred in the polished specimens.

Inter-granular cracks only were observed in polished samples after thermal fatigue

loads, whereas both inter- and intra-granular cracks occurred in the pre-cracked samples

(figure 3.48). Typically intra-granular cracks will eventually form in W only if the

material “needs” to release more stresses than it died after the formation of inter-

granular cracks. No intra-granular cracks were observed in the polished specimens

although they have been subjected to higher stresses than the pre-cracked specimens

during exposure to thermal loads. Therefore, the intra-granular cracks observed in

pre-cracked surfaces were induced by EDM. Thus, the crack density was higher in the

pre-cracked specimens because EDM induced cracks (inter- and intra-granular) in W

surfaces at regular intervals.

The common feature to the two crack patterns were the continuous curved inter-

granular cracks. Intra-granular cracks in the form of discontinuous straight cracks

were observed in the pre-cracked samples only.

The average crack depth of the pre-cracked samples was below 40 μm under the most

severe loading conditions (16 MW·m−2 or 2000◦C) as shown in table 3.12. Furthermore,

the crack depth did not vary with the temperature nor the cycle number. In contrast

to the pre-cracked specimens, the polished specimens had a crack depth that increased

with the cycle number. Furthermore, the crack depth was higher in the polished

surfaces than in the pre-cracked surfaces.
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Figure 3.47. BSE micrographs of the loaded areas of both specimen types after
1000 cycles. Discontinuous straight cracks were characteristic of the pre-cracked
surfaces as none was observed in the polished surfaces.

Average crack depths (in μm)
Polished surfaces Pre-cracked surfaces

Materials 2000◦C, 15 MW·m−2 1600◦C, 16 MW·m−2 2000◦C, 11 MW·m−2

Plansee rod Ø 12 mm 98±27 17±4 19±1
Plansee rod Ø 30 mm 43±18 40±1 24±13
Plansee rod Ø 60 mm >200 μm 16±8 heavily damaged
Plansee rod Ø 80 mm 73±27 35±4 22±8

Table 3.12. Average crack depths. The crack depth was higher in the polished
specimens despite higher stresses in those samples.
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Figure 3.48. Optical micrographs (after etching) of the cross sections of the
loaded areas of both specimen types. The cracks in the polished surfaces were
mainly inter-granular, whereas both inter- and intra-granular cracks were observed
in the pre-cracked surfaces.

The difference in terms of crack depth between the pre-cracked and the polished speci-

mens is well visible on the cross section pictures (figure 3.49). This difference in terms of

resistance to crack propagation between the two specimen types could be related to the

difference in temperature gradients resulting in higher stresses in the polished blocks

(15 MW·m−2 at 2000◦C in the polished samples versus 16 MW·m−2 at 1600◦C or/and

11 MW·m−2 at 2000◦C in the pre-cracked sample). It could also be due to different

stress relaxation mechanisms. Typically in W cracks induced by thermal stresses using

an e-beam result from compressive and tensile forces. In the pre-cracked specimens,
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Figure 3.49. (Left) BSE and (middle and right) optical micrographs of the cross
sections of the loaded areas of both specimen types showing a higher crack depth
in the polished surfaces.

the crack propagation was probably limited by the high crack density as this provided

spaces for grains to expand during the heating cycle, this avoiding compressive stresses

and plastic deformation, and consequently resulting in less tensile stresses during cool-

ing down. In the polished blocks, the absence of cracks before thermal loading and

the preferential formation of cracks at grain boundaries, where the lowest mechanical

strength is provided, would lead to more plastic deformation and the necessary stress

relief would have manifested itself in crack propagation, explaining the increase of the

crack depth with the cycle number (shown in table 3.9 in section 3.5.2).

3.5.4 Performance of the grades under the combined thermal

load

After thermal shock loads only

After a single shot with a power density of 0.5 GW·m−2 and a pulse duration of 5 ms

at room temperature, cracks were observed in all materials as expected (figure 3.50).

The failure mechanism was cracking by tensile forces, like for the cracks induced by
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thermal fatigue. However, due to the high power density, tensile forces were greater in

that case, hence the crack width of the thermal shock cracks was larger (∼5 μm, more

than the double).

Figure 3.50. BSE micrographs of the top surfaces after one pulse at a power
density of 0.5 GW·m−2 during 5 ms performed at room temperature showing cracks
in all materials.

The cracks were located across the loaded areas. In the rod materials providing no

preferential orientation of the grains on the top surface, the cracks tended to describe

curves, whereas in the rolled plate characterised by elongated grains, the cracks followed

the direction of the grain deformation and were mainly straight.

Beside tensile stresses related fractures leading to cracking, shear forces, either hor-

izontal or vertical, occurred in the material, resulting in the friction of the cracked
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surfaces or the lifting of material parts respectively. Furthermore, several places with

missing material were found along the crack path indicating the erosion of particles

(figure 3.51).

Figure 3.51. SEM micrographs of the top surfaces after one thermal shock pulse
(0.5 GW·m−2, 5 ms, RT). In general, cracked surfaces underwent shear forces by
(a) horizontal motion (e.g. Plansee 12 mm diameter rod) and (b) vertical motion
leading to friction of the cracked surfaces or the lifting of material parts (e.g.
Polema rolled plate), respectively. (c) After lifting, material parts were ejected at
random positions on the path of the cracks (e.g. Polema 30 mm diameter rod).

After the combined thermal load (synergistic effect)

To evaluate the cracking threshold under the present loading conditions (50-1000 cycles,

surface temperatures ∼1000-2200◦C, with and without transient load) the components

were taken out of the testing facility after 1, 5 and 10 cyclic thermal loads. Cracking by

thermal fatigue was observed on the whole loaded surface of the materials after 5 cycles

at 1900◦C (figure 3.52, the cracking threshold by thermal fatigue found itself between

1 and 5 cycles at 1900◦C). Cracks introduced by thermal shock loads had merely no

impact on the cracking threshold under thermal fatigue loads.

Table 3.13 shows the average crack distances measured independently on the surfaces

subjected to steady-state thermal loads only and on the surfaces subjected to both

loading types. As the values were similar on both sides, the surface modifications

induced by thermal shock had no impact on the crack formation by thermal fatigue.

Figure 3.53 shows the microstructures of the top surfaces after exposure to thermal

fatigue loads, with and without thermal shock loads. The damages (mainly the cracks)

induced by thermal shock had no impact on the crack pattern formed by thermal fatigue

(network of curved cracks) apart from the characteristic large cracks typically induced

by thermal shock loads [95, 128, 133–143]. It also had no impact on the crack orienta-

tion (figure 3.54), similar to that observed previously (figure 3.38 in section 3.5.2).

In the areas exposed to the combined thermal load, cracks mainly occurred along the

grain boundaries as shown in the cross section views of the loaded areas (figure 3.54)

and as observed during thermal fatigue loads only in figure 3.38 in section 3.5.2.
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Figure 3.52. BSE micrographs of the top surfaces after a single thermal
shock load (0.5 GW·m−2, 1 pulse, 5 ms, RT) followed by thermal fatigue loads
(15 MW·m−2, 5 cycles (20 s each), surface temperature of 1900◦C). Cracks induced
by thermal shock beforehand did not prevent crack formation by thermal fatigue.

Average crack distances (in μm); TS = thermal shock
50 cycles 1000 cycles
1900◦C 2000◦C 2200◦C

Materials no TS with TS no TS with TS no TS with TS
Plansee rod Ø 12 mm 101±48 95±35 78±42 75±34 76±40 93±49
Plansee rod Ø 30 mm 92±36 78±31 72±44 87±26 79±45 103±64
Plansee rod Ø 60 mm 74±37 79±34 189±118 188±101 76±32 81±36
Plansee rod Ø 80 mm 174±101 202±98 246±122 373±245 179±37 199±88
Polema rod Ø 30 mm 74±40 75±33 73±32 101±81 65±29 48±18
Polema plate (forged) 42±19 39±13 63±43 65±25 38±14 38±12
Polema plate (rolled) 21±12 20±411 26±11 28±14 16±6 18±10

Table 3.13. Average crack distances measured on both sides of the loaded sur-
faces independently. The values were similar on the side exposed to steady-state
thermal loads only and on the side exposed to both transient and steady-state
thermal loads on the other hand.
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Figure 3.53. BSE micrographs of the top surfaces after 1000 thermal fatigue
loads (15 MW·m−2) with and without thermal shock. The damages induced by
thermal shock showed no impact on the crack formation by thermal fatigue.
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Figure 3.54. Optical micrographs of the cross sections of the top surfaces after
1000 thermal fatigue loads (15 MW·m−2) with and without thermal shock. Cracks
were inter-granular regardless the loading scheme.
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As seen previously in sections 3.5.1 (figures 3.24 and 3.27) and 3.5.2 (figures 3.44 and

3.45) the 60 mm diameter rod was not comparable to the other materials in terms of

strength as it heavily cracked after 1000 cycles at high temperature (∼2000◦C). This
significant cracking was not minimized by the cracks induced beforehand by thermal

shock as shown in figure 3.55.

Figure 3.55. BSE micrographs of the cross section of the top surface of the
Plansee 60 mm diameter rod after thermal shock and 1000 cyclic thermal loads at
(a) 2000◦C and (b) 2200◦C showing significant damages (crack opening, cavities
formation after crack propagation in the bulk, surface roughening) despite the
stress relief induced by thermal shock loads’ cracks.

Figure 3.56 shows the average crack depths (with standard deviations) of the other

materials measured independently on the surfaces subjected to thermal fatigue loads

only (1000 cycles) and on the surfaces subjected to the combined thermal loads. The

deep cracks typically induced by thermal shock were not taken into account in the

measurement of the crack depth to make a fair comparison between the two sides.

Despite some small gaps within the values measured at 2000◦C, the crack depths mea-

sured on both sides of the loaded surface were in general similar. Only the 12 mm

diameter rod material exhibited a remarkable crack depth variation at 2000◦C (larger

crack depth in the area only subjected to steady-state thermal loads) probably caused

by the overheating of the block during testing (figure 3.46 in section 3.5.3). It can

be concluded that the thermal shock did not show a clear impact on the resistance to

crack propagation.
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Figure 3.56. Average crack depths (the bars are the standard deviations) mea-
sured independently on both sides of the loaded areas after 1000 cyclic thermal
loads (top) at 2000◦C and (bottom) 2200◦C with an without thermal shock. The
impact of the damages induced by thermal shock on the crack propagation was
not clear3.
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4 Summary and conclusions

Failure mode of plasma-facing components for the European DEMO diver-

tor

Based on the examination of the tungsten-armoured plasma-facing components for the

helium-cooled DEMO divertor, its viability for a fusion environment and the therein

occurring thermo-mechanical loads were strongly related to the choice of the appropri-

ate material as well as joining, design and machining issues.

The helium-cooled components were exposed to cyclic thermal loads with a power

density in the range of 9 to 14 MW·m−2. With a coolant temperature between 500 and

600◦C, the resulting loaded surface temperature was about 1700◦C. Thermally induced

mechanical stresses led to dense cracks network in the loaded surface as well as crack

propagation along grain boundaries. Consequently, cracks followed the direction of

the grain deformation. Crack propagation in both the sacrificial plasma-facing part

and the structural and heat sink part created a path for helium leakage. It has been

observed that the increase of the helium gas’ mass flow rate led to a greater cooling

efficiency. The resulting lower operation temperature altered the crack development

(suppression of the dense cracks network, shallow cracks). Besides, the tungsten grade

for the plasma-facing part showed an impact on the resistance to crack propagation

as the material from the Polema company (Russian company) showed a lower crack

depth than the material from the Plansee company (Austrian company) although it

had no castellations (greater thermal stresses) and was subjected to more thermal

cycles (i.e. a greater stresses accumulation). Those material issues raised the need

of improved tungsten grades with high crack resistance under thermal loads and high

thermal stability, namely with a low ductile-to-brittle transition temperature and high

recrystallisation temperature.

In the joint between the plasma-facing part (W tile) and the heat sink part (W-

1%La2O3 thimble) the nickel-based brazing filler metal (STEMET® 1311, brazing

temperature = 1050◦C) melted during operation and led to further degradation of the

component by eroding the tungsten-based materials. In particular the transport of

molten brazing metal away from the joint created a thermal barrier preventing any

effective cooling of the plasma-facing part. It appeared to be crucial to avoid melt-

ing of the nickel-based brazing filler metal. For this purpose one option is to reduce

the operation temperature window. Another option is to use a brazing filler metal
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with a higher brazing temperature. An attempt was performed with the brazing metal

CuNi44 (brazing temperature = 1300◦C) but this failed due to an improper filling of

the gap between the tile and the thimble during the brazing procedure. Investigations

on brazing filler metals are still on-going. An other thermal barrier was created on the

inner surface of the heat sink part after the formation of an oxide layer caused by the

residual oxygen in the helium-cooling circuit.

In the joint between the heat sink part (W-1%La2O3) and the supporting structure

(steel) cracks were observed in the as-machined brazing (or casted) layer probably

due to manufacturing-induced stress concentrations. During thermal loads, cracks

developed and were particularly large in this region due to the large thermal expansion

coefficients mismatch between the materials. One should study the possibility, if any,

of minimizing crack formation by stress analysis and correlated design modifications.

Before exposure to thermal loads, the machining technique employed for the fabrication

of the tungsten parts, namely electric discharge machining (EDM), induced discrete

cracks (typically ∼30 μm deep) in tungsten surfaces due to the high brittleness of

the material at room temperature. The removal of those cracks by grinding during

components manufacturing did not prevent the crack development by thermal fatigue.

In combination with pre-existing defects in raw tungsten materials (rods and plates),

the EDM-induced cracks could have contributed to further degradation of the plasma-

facing part by growing during thermal loads. In order to avoid or minimize cracks after

EDM, optimised machining processes providing high quality tungsten surfaces must be

found. It has been demonstrated that conventional techniques such as milling and

turning are reliable for the machining of accessible tungsten surfaces while diamond

wire cutting as well as cutting wheels made of diamond or cubic boron nitride were

suitable for the shaping of closed (i.e. non-accessible or poorly accessible) surfaces (see

appendix A).

Performance of tungsten grades under steady-state thermal loads

A tungsten grades qualification program has been performed to investigate and com-

pare the performance of various pure tungsten materials under steady-state thermal

loads. For this program, tungsten grades from Polema and Plansee were selected. The

production route of each material was specific as at least one parameter always differs

from a material to another: the provenance, the form of the raw product (rod or plate),

the diameter of the rod, and the deformation process (forging or rolling). A total of

seven tungsten grades, with and without pre-cracking, were investigated under cyclic

thermal fatigue loads with power densities between 11 and 19 MW·m−2 and surface

temperatures between 1000 and 2600◦C.
Three materials distanced themselves from the others. Among them the Russian rolled

plate with grains oriented perpendicular to the heat flux showed the highest cracking

threshold (the only material that showed no cracks after 5 cycles at 1900◦C). It also

showed the highest resistance to crack propagation (the only material that showed no

cracks network on the loaded surface after 50 cycles indicating that cracks did not
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propagate around grains completely, and it had the lowest crack depth of all). Fur-

thermore, this grade showed the highest roughening threshold (no roughening on the

loaded surface after 1000 cycles at 2000◦C). Finally, it showed the greatest recrystalli-

sation resistance (lowest grain growth depth). On the contrary, the Russian forged

plate with no particular grain orientation and the smallest grain size of all showed a

significant particle erosion. The reason was that the crack depth range was greater

than the grain size and as a result it led to crack propagation parallel to the loaded

surface and subsequent ejection of particles. During the first cyclic thermal loads the

erosion took place at random positions but the accumulation of thermal stresses led

to complete surface erosion at high cycle number. The horizontal cracking created a

thermal barrier leading to surface melting. The Plansee rod with a diameter of 60

mm with grains oriented parallel to the heat flux showed a significant degradation

at high cycle number (1000 cycles) and temperature (above 2000◦C) characterized by

large crack opening and crack propagation (hundreds of μm) indicating a low crack-

ing resistance (independently of the surface quality). Cracks propagated along grain

boundaries around the comparably large grains, the second largest grain size of all.

After propagation the cracks opened in the bulk leading to the cavity formation. Such

degradation could be related to the high porosity of the material.

The other materials, namely the 12 mm, 30 mm (Plansee and Polema) and 80 mm

diameter rods performed similarly. They all showed similar surface roughening and

cracking thresholds (less than 5 cycles at 1900◦C). As the orientation of the grain de-

formation (which defines the cracking pattern and the crack propagation direction) of

those materials was the same (perpendicular to the loaded surface), their cracking pat-

terns were also identical (curved cracks’ network, orientation of the crack propagation

perpendicular to the loaded surface). The crack depth of those materials was shallow

(∼30 μm) after 50 cycles and 1000 cycles (∼45-55 μm).

One additional feature was incorporated into this program: the study of the impact

of machining-induced surface modifications on the materials’ thermal response. Thus,

both specimens with defect-free surfaces (obtained by mirror polishing) and specimens

with cracked surfaces (obtained by electric discharge machining) were thermally loaded

and compared. Pre-cracked surfaces showed two distinct types of crack, namely con-

tinuous curved cracks and discontinuous straight cracks already before thermal loads,

whereas polished surfaces showed continuous curved cracks only after thermal loads.

Cross section observations showed that continuous curved cracks occurred along grain

boundaries (inter-granular) and discontinuous straight cracks occurred inside of grains

(intra-granular). Furthermore, the crack distance was smaller in pre-cracked specimens,

indicating that EDM induced a higher crack density than stresses induced by the elec-

tron beam loading (under the present design and testing configuration). The crack

depth of the polished specimens increased with the cycle number and became higher

than the crack depth of the pre-cracked specimens that remained constant (∼30 μm)

despite the accumulation of thermal stresses. Therefore, in pre-cracked surfaces, the
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crack propagation was limited by the high crack density as this provided enough space

for grains to expand during the heating cycle, thus avoiding the compressive stresses

and plastic deformation, resulting in less tensile stresses during cooling down. On the

contrary, polished surfaces led to more plastic deformation during thermal loads and

the stress relief manifested itself in crack propagation.

The polished specimens were also subjected to thermal shock loads (before thermal fa-

tigue loads). The purpose of the combined load was to introduce cracks in the materials

(by thermal shock) and study the further development of the damage under thermal

fatigue loads in terms of (i) surface temperatures and (ii) initial surface damage. The

cracks pre-induced in all materials by a single pulse thermal shock induced by thermal

fatigue afterwards.



A Appendix: machining qualification pro-

gram for tungsten

Material scientists are continuously looking for materials that can operate at elevated

temperatures and under harsh environmental conditions. On the other hand, design

engineers who choose the materials are specifying low tolerances and better quality

finishes. Indeed, to reach high performance, reliability and functionality of the plasma-

facing components, excellent material surfaces are required. Thus, the need for efficient

and highly accurate machining processes is as important as the development of the

material itself if practical applications are ever to be found. W is a very attractive

material for nuclear fusion applications but its drawbacks, namely its high hardness

and brittleness at room temperature, make the fabrication of W parts a challenging

task that requires special handling and skill.

A machining qualification program was performed to find suitable machining techniques

(i.e. providing high quality surfaces) for W and consequently alternatives to electric

discharge machining (EDM). In the frame of this program, W parts were manufac-

tured using different machining techniques and the machined surfaces were analysed

by metallography and material characterisation.

A.1 Machining techniques

The machining techniques employed in this program were all based on the material-

removal process (W was in the form of rod or plate before being cut). The machining

methods were turning, milling, wheel and diamond wire cutting. State-of-the-art tech-

niques like powder injection moulding (PIM) are also being investigated [144, 145].

Turning

Turning is a conventional cutting process that requires a turning machine (also called

lathe), a workpiece, a fixture, and a cutting tool. The workpiece is secured to the

fixture which itself is attached to the turning machine and allowed to rotate at high

speeds. The cutter is typically a single-point cutting tool that is also secured in the

machine. The cutting tool feeds into the rotating workpiece with a motion parallel

to the axis of rotation and cuts away material in the form of small chips to create
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the desired shape. The depth of cut is the material thickness that is removed as the

workpiece is being machined (figure 1.1).

Figure 1.1. Scheme of the turning process.

Turning enables to produce cylindrical external surfaces (i.e. contoured surfaces) as

well as flat surfaces when the cutting tool is fed perpendicular to the axis of rotation

(i.e. across the face of the workpiece), then speaking about facing, a variant of turning.

Milling

Milling is a common cutting process that employs a milling machine, a workpiece, a

fixture, and a cutting tool. The cutter (or miller) is typically a multi-point cutting

tool or a cutter with sharp teeth that rotates at high speeds (in opposition to turning).

By feeding the workpiece into the rotating cutter the material is cut away from this

workpiece in the form of small chips to create the desired shape. One can distinguish

two types of milling: front milling when the cutter rotates about an axis perpendicular

to the surface of the workpiece and peripheral milling when the axis of rotation is

parallel to the surface (figure 1.2).

Milling may be used with or without coolant. A characteristic of dry milling is the

use of compressed air instead of coolant and a higher cutting speed combined with a

smaller depth of cut. Due to the lack of coolant heat is induced to the system. The

heat removal is realized by the chips that dash away glowing while the bulk material

stays cool. The advantage of dry milling is the production speed, four times faster

compared to wet milling [147].

Diamond wire cutting

A wire saw is a machine using a metal wire as cutting tool. The two ends of the wire

are tightly wrapped round distant pulleys fixed to the machine in such a way that the
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Figure 1.2. Scheme of the peripheral milling process [146].

center part of the wire is kept into tension. The unidimensional motion of the wire

is ensured by the rotation of the pulleys around their axis (acting like the spindle in

turning and milling). The pulleys rotate continuously in one direction or oscillate. The

workpiece is fixed to a support which moves perpendicular to the motion of the wire

(figure 1.3).

Figure 1.3. Scheme of the wire cutting process.

In diamond wire cutting the wire is impregnated with diamond dust to cut through

materials. Because of the hardness of diamonds this cutting technique can cut through

almost any material that is softer than the diamond abrasive.

Cutting wheels

Instead of a wire, a cutting wheel (or disc) may also be used as cutting tool. While

the workpiece is secured to a fixture, the fast rotating disc feeds into the workpiece to



102 Appendix: machining qualification program for tungsten

make a straight cut (figure 1.4). In this work, wheels made of diamond or cubic boron

nitride (CBN) were used.

Figure 1.4. View of a working diamond cutting wheel with water coolant to
remove chips [120].

A.2 Machining parameters

Several W pieces (or tiles) were fabricated using the turning and milling processes.

Each tile comprised a hexagonal part on top of a bowl-like part with concave surfaces

(figures 1.5). The tiles were about 20 mm wide and 12 mm thick. The top surface of

the tile was flat whereas the bottom (the bowl-like part) was drilled (hollow) and round

inside. This geometry enabled to see on one single tile the impact of both machining

Figure 1.5. Tiles shaped by turning and milling, before the drilling of the bottom
part [148].

processes on both flat and curved surfaces. Indeed, the tiles can be divided into five

surfaces of interest: three flat surfaces (A, B, and D) and two surfaces with curved

outlines (C and E) as shown in figure 1.6). The material used for the tiles’s fabrication
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Figure 1.6. Scheme of the cross section of a tile showing the five surfaces of
interest: flat surfaces A, B, and D; curved surfaces C and E [148].

was a forged rod. The direction of the grain deformation was perpendicular to the top

surface of the tile (surface A) (figure 1.7).

Figure 1.7. The grain orientation was perpendicular to top surface (surface A).

Four series of tiles were fabricated (table A.1). Series 1 and 2 enabled to study turning

and milling with respect to the shape (flat or curved) of the surfaces. The difference

within those two series lied in the shaping of the surface B by either front (series 1) or

peripheral (series 2) milling and the surface E by either turning (series 1) or milling

(series 2). Water-cooling was used during machining to remove chips resulting from

cutting. Series 3 and 4 were exclusively dedicated to the milling process. In series 3

the axis of rotation of the cutting tool was changed to parallel to the grain orientation
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(radial grain orientation) to study the impact of machining with respect to the grain

orientation. In series 4 the machining process was performed without cooling.

Surfaces Series 1 Series 2 Series 3 Series 4
A Turning Per. milling (radial) - Per. milling (dry)
B Front milling Turning Per. milling (axial) Front milling (dry)
C Turning Turning - -
D Turning Turning - -
E Turning Front milling - -

Note: within series 1 and 2 several tiles were manufactured per series and the cutting tool was not
systematically changed before the machining of new tiles whereas within series 3 and 4 only one tile
was examined per series, always manufactured with a new cutting tool.

Table A.1. Series of tiles fabricated for the assessment of turning and milling
with respect to the surface morphology (series 1 and 2), the grain orientation
(series 3) and the cooling option (series 4).

Thus, turning and milling techniques were investigated with the following features:

• turning of flat surface with radial grain orientation and curved surface

• front milling of flat surface with radial grain orientation and curved surface

• peripheral milling of flat surface with radial grain orientation

• peripheral milling of flat surface with axial grain orientation

• front milling without coolant

• peripheral milling without coolant

Tiles were manufactured using the turning machine center Traub TNA 300 (figure 1.8)

and in the milling machine DMU 50 evolution (figure 1.9).

Figure 1.8. View of the inside of the turning machine showing the rotating
workpiece fed into a single-point cutting tool [120].
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Figure 1.9. View of the inside of the milling machine showing the shaping of
workpieces by multi-point cutting tools rotating with an axis (a) perpendicular
(front milling) or (b) parallel (peripheral milling) to the machined surface [120].

For the assessment of the surface quality obtained with the other techniques, namely

wheel and wire cutting, the approach was simpler. For cutting wheels (1 mm thick),

slots (or castellations) were machined directly perpendicular to the top surface (surface

A) of the tiles. For cutting with the diamond wire (1 mm diameter), a groove was

machined on a separate W piece.

A.3 Results (examination of machined surfaces)

The surface quality was examined by metallography. A cut was performed perpendic-

ular to the top surface along the full length of the tile for the examination of the cross

section.



106 Appendix: machining qualification program for tungsten

A.3.1 Turning and milling

Flat surfaces and rotation axis of the cutting tool perpendicular to grain

orientation (series 1 and 2)

Flat surfaces machined by turning showed two distinct surface aspects depending on

the tool quality: smooth surfaces (Ra=0.83 μm) without any defect in tiles machined

with a brand new tool (figure 1.10(a)) or rough surfaces (Ra=0.89 μm) with very tiny

grooves in tiles machined with a worn tool (figure 1.10(b)). The newer the tool, the

smoother the surface, as the cutting tool was deteriorated after several passes.

Figure 1.10. BSE micrographs of the cross sections of flat surfaces machined by
turning using (a) a new tool (smooth surface) and (b) a worn cutting tool (tiny
grooves and rougher surface). The cutting tool was damaged after several passes
in W, leading to a decrease of the surface quality.

Each flat surface machined by front milling showed an irregular quality, from smooth

areas without no particular defects to others with grooves, bumps and cracks parallel

to the machined surface (figure 1.11).

Figure 1.11. BSE micrographs of the cross section of one flat surface machined
by front milling. The surface showed on one hand (a) areas with no particular
defect, and on the other hand (b) and (c) areas with cracks, bumps and grooves.
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Flat surfaces machined by peripheral milling (radial) also showed an irregular quality

with on the one hand areas without defect (figure 1.12(a)) and on the other hand

areas with a few shallow grooves and tiny cracks parallel to the machined surface

(figure 1.12(b)).

Figure 1.12. BSE micrographs of the cross sections of flat surfaces machined by
peripheral milling (radial) showing (a) no defects and (b) shallow grooves as well
as tiny cracks parallel to the machined surface.

Flat surfaces and rotation axis of the cutting tool parallel to grain orienta-

tion (series 3)

Within one single tile flat surfaces machined by peripheral milling (axial) showed two

different aspects depending on the side of the hexagonal part (B1 or B2). One side

showed no defects whereas the other side showed bumps and cracks. As the sides of the

hexagonal part were machined one after the other the miller was probably deteriorated

during the machining of the tile. Another tile manufactured with a new miller showed

Figure 1.13. BSE micrographs of the cross sections of flat surfaces machined by
peripheral milling (axial) showing (a) bumps and cracks and (b) no defect. The
surface quality varied from a face of the hexagonal part to an other due to the
tool’s degradation during machining of the tile.
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smooth surfaces without defect (figure 1.14). As in turning, the wear of the cutting

tool led to an increase of the surface roughness.

Figure 1.14. BSE micrograph of the cross section of a flat surface machined
by peripheral milling (axial) equipped with a new cutting tool. The surface was
smooth and did not show any obvious defect such as bumps or cracks characteristic
of surfaces machined with a worn tool.

Flat surfaces without coolant (milling only)

As a new cutting tool was employed during dry milling so that the quality of the

machined surface was comparable to the best surface quality obtained by milling with

coolant. In general, the surfaces machined by dry milling showed similar damages

as those induced by milling with coolant (cracks parallel to the surface, notches and

grooves). Also, the quality was irregular within one single side. There was no visible

difference in terms of surface aspect between front and peripheral milling (figure 1.15).

Figure 1.15. BSE micrographs of the cross sections of surfaces machined by
(a) front and (b) peripheral milling without coolant. Similar defects than those
induced by wet milling were observed.
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It took 2 hours to machine a tile by wet willing and 30 minutes by dry milling [147].

Furthermore, in case of dry milling, the machined surface was not contaminated by the

coolant.

Curved surfaces

Curved surfaces machined by turning revealed a sawtooth structure. To machine

curved surfaces by turning it is necessary to define a series of increasing (or decreasing)

depths of cut to obtain a round shape eventually; a repositioning of the cutting tool

was required after each setting of the depth of cut. The sawtooth structure that ap-

peared at the curvature was the result of this constant tool’s adjustment (figure 1.16).

Near the “teeth”, cracks and tiny cavities were observed, indicating a weakening of

the material in this region (figure 1.17). On the contrary, curved surfaces machined by

front milling were smooth and almost defect-free (figure 1.18).

Figure 1.16. BSE micrographs of the cross section of a curved surface machined
by the turning process showing a sawtooth aspect.

Figure 1.17. BSE micrographs of the cross section of a curved surface machined
by turning showing the defects at the vicinity of the “teeth”.
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Figure 1.18. BSE micrographs of cross section of a curved surface machined by
milling showing no defects.

A.3.2 Cutting wheels

Slots machined with a diamond or CBN cutting wheel displayed good surface qualities

as shown in figure 1.19. There was no visible difference in surface aspect as far as flat

surfaces were involved. The curved region (at the bottom of the slots) machined by the

CBN cutting wheel was not as round as that machined by the diamond cutting wheel.

The diamond cutting wheel seemed slightly less abrasive but overall smooth surfaces

without defect were obtained with both diamond and CBN materials.

Figure 1.19. BSE micrographs of cross sections of slots machined by cutting
wheels showing smooth contours without defect.
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A.3.3 Diamond wire cutting

The surface of the groove machined by diamond wire cutting showed a very smooth

contour. Only a few tiny defects (notches) were detected at random positions (fig-

ure 1.20).

Figure 1.20. BSE micrographs of a cross section of the groove made by diamond
cutting wire showing tiny defects only.

Defects in closed (i.e. poorly or non-accessible) surfaces such as castellations may be

removed by a non-conventional finishing technique called electro-chemical machining

(ECM) [149–152].

A.4 Summary and conclusions

Turning and milling (with coolant) produced flat smooth surfaces without defect as

long as a new cutting tool was employed. In both techniques the wear of the tool led

to the degradation of the surface quality and increase of the surface roughness. Minor

defects such as notches, cracks (parallel to the machined surface), grooves and bumps

were observed.

There was no difference of quality between front and peripheral milling. Both milling

variants induced the same types of defect. There was no measurable change of the

surface quality as a function of the grain orientation. The suppression of the coolant

had no impact on the high quality of the surface.
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For curved surfaces’ machining, turning induced a sawtooth structure and locally dam-

aged the material whereas milling delivered smooth and almost defect-free surfaces.

Overall turning and milling were both cleat-cut processes suitable for the fabrication

of high quality W parts. Milling distanced itself from turning in the machining of

curved surfaces as it does not produce saw-tooth structures in contrast to turning.

Wheel cutting as well as diamond wire cutting were both clean-cut processes as well,

leading to smooth surfaces regardless of the grain orientation and the surface shape. A

few minor defects were detected in the surfaces machined by these processes but noth-

ing comparable to the characteristic cracks observed in surfaces machined by EDM.

Table A.2 summarizes the surface quality achieved with the different machining tech-

niques.

Machining techniques Flat surfaces Curved surfaces Closed surfaces
Turning + -
Front milling + +
Peripheral milling (radial) +
Peripheral milling (axial) + +
Milling (dry) +
Diamond wire + + +
Cutting wheels + + +

+: good quality, -: minor defects

Table A.2. Quality of flat, curved and closed surfaces achieved by turning,
milling, diamond wire cutting and cutting wheels.

Turning, milling, and EDM may be used to machine open surfaces. One has to take

into account that the use of EDM requires an additional surface finishing if one wants

to obtain smooth defect-free surfaces, whereas finishing may be optional when using

the turning and milling processes.

Turning and milling cannot be used for the shaping of closed surfaces such as castel-

lations (∼1 mm narrow) as their respecting tools are too large. For closed surfaces,

EDM, diamond wire saw and cutting wheels can be employed. Diamond wire cutting

and cutting wheels appeared as a good alternative to EDM with respect to surface

quality.
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J. Schlosser, A. Salito, B. Schedler, and C. Wu, “European development of pro-

totypes for ITER high heat flux components,” Fusion Engineering and Design,

vol. 49–50, pp. 135–143, 2009.

[54] G. Kalinin, V. Barabash, A. Cardella, J. Dietz, K. Ioki, R. Matera, R. Santoro,

R. Tivey, and the ITER Home Teams, “Assessment and selection of materials for

ITER in-vessel components,” Journal of Nuclear Materials, vol. 283-287, pp. 10–

19, 2000.

[55] M. Merola, W. Daenner, M. Pick, and the EU ITER Participating Team, “EU

R&D on divertor components,” Fusion Engineering and Design, vol. 75–79,

pp. 325–331, 2005.

[56] M. Roedig, R. Duwe, W. Kuehnlein, J. Linke, M. Scheerer, I. Smid, and B. Wiech-

ers, “Testing of actively cooled high heat flux mock-ups,” Journal of Nuclear

Materials, vol. 258–263, pp. 967–971, 1998.

[57] M. Roedig, M. Akiba, P. Chappuis, R. Duwe, M. Febvre, A. Gervash, J. Linke,

N. Litounovsky, S. Suzuki, B. Wiechers, and D. L. Youchison, “Comparison of

electron beam test facilities for testing of high heat flux components,” Fusion

Engineering and Design, vol. 51–52, pp. 715–722, 2000.

[58] J. Linke, “High Heat Flux Performance Of Plasma Facing Materials And Com-

ponents Under Service Conditions In Future Fusion Reactors,” Transactions Of

Fusion Science And Technology, vol. 49, pp. 455–464, 2006.

[59] H. Bolt, V. Barabash, W. Krauss, J. Linke, R. Neu, S. Suzuki, N. Yoshida, and

ASDEX Upgrade Team, “Materials for the plasma-facing components of fusion

reactors,” Journal of Nuclear Materials, vol. 329–333, pp. 66–73, 2004.

[60] A. Raffray, R. Nygren, D. Whyte, S. Abdel-Khalik, R. Doerner, F. Escourbiac,

T. Evans, R. Goldston, D. Hoelzer, S. Konishi, P. Lorenzetto, M. Merola, R. Neu,

P. Norajitra, R. Pitts, M. Rieth, M. Roedig, T. Rognlien, S. Suzuki, M. Tillack,

and C. Wong, “High heat flux components - Readiness to proceed from near

term fusion systems to power plants,” Fusion Engineering and Design, vol. 85,

pp. 93–108, 2010.



Bibliography 119

[61] J. Linke, T. Hirai, M. Roedig, and L. Singheiser, “Performance of plasma-facing

materials under intense thermal loads in tokamaks and stellarators,” Fusion Sci-

ence and Technology, vol. 46, pp. 142–151, 2004.

[62] V. Barabash, M. Akiba, I. Mazul, M. Ulrickson, and G. Vieider, “Selection,

development and characterisation of plasma facing materials for ITER,” Journal

of Nuclear Materials, vol. 233–237, pp. 718–723, 1996.

[63] J. Linke, P. Lorenzetto, P. Majerus, M. Merola, D. Pitzer, and M. Roedig, “EU

Development of High Heat Flux Components,” vol. 47, pp. 678–685, 2005.

[64] A. Raffray, G. Federici, V. Barabash, H. Pacher, H. Bartels, A. Cardella, R. Jake-

man, K. Ioki, G. Janeschitz, R. Parker, R. Tivey, and C. Wu, “Beryllium appli-

cation in ITER plasma facing components,” Fusion Engineering and Design,

vol. 37, pp. 261–286, 1997.

[65] M. Shimada, A. Costley, G. Federici, K. Ioki, A. Kukushkin, V. Mukhovatov,

A. Polevoi, and M. Sugihara, “Overview of goals and performance of ITER and

strategy for plasma-wall interaction investigation,” Journal of Nuclear Materials,

vol. 337–339, pp. 808–815, 2005.

[66] V. Philipps, J. Roth, and A. Loarte, “Key issues in plasma-wall interaction for

ITER: a European approach,” Plasma Physics and Controlled Fusion, vol. 45,

pp. A17–A30, 2003.

[67] G. Federici, D. Holland, G. Janeschitz, and C. Wu, “The influence of key opera-

tion parameters and material properties on the quantification of tritium inventory

and permeation in the plasma facing components of ITER,” Journal of Nuclear

Materials, vol. 241-243, pp. 260–267, 1997.

[68] J. Compan, T. Hirai, G. Pintsuk, and J. Linke, “Microstructural and thermo-

mechanical characterization of carbon/carbon composites,” Journal of Nuclear

Materials, vol. 386–388, pp. 797–800, 2009.

[69] T. Hirai, J. Compan, K. Niwase, and J. Linke, “Laser raman microprobe anal-

ysis of graphite exposed to edge plasma in the TEXTOR tokamak,” Journal of

Nuclear Materials, vol. 373, pp. 119–122, 2008.

[70] G. Pintsuk, J. Compan, T. Koppitz, J. Linke, A. Peacock, D. Pitzer, M. Roedig,

and S. Wikman, “Mechanical and thermo-physical characterization of three-

directional carbon fiber composites for W-7X and ITER,” Fusion Engineering

and Design, vol. 84, pp. 1525–1530, 2009.

[71] K. Sato, E. Ishitsuka, M. Uda, H. Kawamura, S. Suzuki, M. Taniguchi, K. Ezato,

and M. Akiba, “Erosion characteristics of neutron-irradiated carbon-based ma-

terials under simulated disruption heat loads,” Journal of Nuclear Materials,

vol. 283–287, pp. 1157–1160, 2000.



120 Bibliography

[72] H. Wuerz, B. Bazylev, I. Landman, S. Pestchanyi, and V. Safronov, “Macroscopic

erosion of divertor and first wall armour in future tokamaks,” Journal of Nuclear

Materials, vol. 307–311, pp. 60–68, 2002.

[73] J. Davis and A. Haasz, “Impurity release from low-Z materials under light particle

bombardment,” Journal of Nuclear Materials, vol. 241–243, pp. 37–51, 1997.

[74] M. Roedig, E. Ishitsuka, A. Gervash, H. Kawamura, J. Linke, N. Litunovski,

and M. Merola, “High heat flux performance of neutron irradiated plasma facing

components,” Journal of Nuclear Materials, vol. 307–311, pp. 53–59, 2002.

[75] C. Wu, C. Alessandrini, P. Bonal, H. Grote, R. Moormann, M. Roedig, J. Roth,

H. Werle, and G. Vieider, “Overview of EU CFCs development for plasma facing

materials,” Journal of Nuclear Materials, vol. 258–263, pp. 833–838, 1998.

[76] C. Wu, C. Alessandrini, J. Bonal, J. Davis, A. Haasz, W. Jacob, A. Kallen-

bach, J. Keinonen, P. Kornejew, R. Moormann, V. Philipps, J. Roth, F. Scaffidi-

Argentina, and H. Wuerz, “Progress of the European R&D on plasma-wall inter-

actions, neutron effects and tritium removal in ITER plasma facing materials,”

Fusion Engineering and Design, vol. 56–57, pp. 179–187, 2001.

[77] T. Hirai, H. Maier, M. Rubel, P. Mertens, R. Neu, E. Gauthier, J. Likonen,

C. Lungu, G. Maddaluno, G. Matthews, R. Mitteau, O. Neubauer, G. Piazza,

V. Philipps, B. Riccardi, C. Ruset, I. Uytdenhouwen, and JET EFDA Contribu-

tors, “R&D on full tungsten divertor and beryllium wall for JET ITER-like wall

project,” Fusion Engineering and Design, vol. 82, pp. 1839–1845, 2007.

[78] T. Tanabe, N. Noda, and H. Nakamura, “Review of High Z Materials for PSI

Applications,” Journal of Nuclear Materials, vol. 196–198, pp. 11–27, 1992.

[79] I. Smid, M. Akiba, G. Vieider, and L. Ploech, “Development of tungsten armor

and bonding to copper for plasma-interactive components,” Journal of Nuclear

Materials, vol. 258–263, pp. 160–172, 1998.

[80] G. Federici, A. Zhitlukhin, N. Arkhipov, R. Giniyatulin, N. Klimov, I. Landman,

V. Podkovyrov, V. Safronov, N. N. A. LoarteK. Tokunagab, N. Yoshidab, Z. Xu,

and M. Merola, “Effects of ELMs and disruptions on ITER divertor armour

materials,” Journal of Nuclear Materials, vol. 337-339, pp. 684–690, 2005.

[81] “Materials Assessment Report, ITER Doc. G 74 MA 10 01-07-11 W 0.2.”

[82] K. Krieger, H. Maier, R. Neu, and ASDEX Upgrade Team, “Conclusions about

the use of tungsten in the divertor of ASDEX upgrade,” Journal of Nuclear

Materials, vol. 266-269, pp. 207–216, 1999.



Bibliography 121

[83] R. Neu, V. Rohde, A. Geier, K. Krieger, H. Maier, D. Bolshukhin, A. Kallenbach,

R. Pugno, K. Schmidtmann, M. Zarrabian, and ASDEX Upgrade Team, “Plasma

operation with tungsten tiles at the central column of ASDEX Upgrade,” Journal

of Nuclear Materials, vol. 290–293, pp. 206–210, 2001.

[84] R. Neu, R. Dux, A. Geier, O. Gruber, A. Kallenbach, K. Krieger, H. Maier,

R. Pugno, V. Rohde, S. Schweizer, and ASDEX Upgrade Team, “Tungsten as

plasma-facing material in ASDEX Upgrade,” Fusion Engineering and Design,

vol. 65, pp. 367–374, 2003.

[85] R. Neu, R. Dux, A. Geier, H. Greuner, K. Krieger, H. Maier, R. Pugno, V. Rohde,

S. Yoon, and ASDEX Upgrade Team

[86] H. Maier, J. Luthin, M. Balden, J. Linke, F. Koch, and H. Bolt, “Properties

of tungsten coatings deposited onto fine grain graphite by different methods,”

Surface and Coatings Technology, vol. 142–144, pp. 733–737, 2001.

[87] K. Tokunaga, N. Yoshida, Y. Kubota, N. Noda, Y. Imamura, T. Oku, A. Ku-

rumada, T. Sogabe, T. Kato, and L. Ploechl, “High heat flux test of actively

cooled tungsten-coated carbon divertor mock-ups,” Fusion Engineering and De-

sign, vol. 49–50, pp. 371–376, 2000.

[88] S. Deschka, C. Garcia-Rosales, W. Hohenauer, R. Duwe, E. Gauthier, J. Linke,
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