According to an old legend, the inventor
of chess was asked by his king, who was
thrilled by the board game, to name
any reward he wanted. The inventor
requested that one grain of wheat
should be placed on the first square of
a chessboard, two grains of wheat on
the second, and so forth, doubling the
number of grains for every new square.
Initially, the king laughed at the inventor
for asking such a low price, but later
made the surprising discovery that he
would not even be close to be able to
pay the full reward.

Today, many HPC application developers
find themselves in the situation of the
king when trying to scale their code to
larger numbers of processors. All of
a sudden, a part of the program starts
consuming an excessive amount of
time. Of course, in contrast to the king
in our legend, computational scientists
usually possess the mathematical skills
to recognize a simple geometric series.
On the other hand, the laws according
to which the resources needed by
the code change as the number of
processors increases are often much
more laborious to infer and also may
vary significantly across individual parts
of complex modular programs. This
is why analytical performance modeling
is rarely attempted to predict the
scaling behavior before problems mani-
fest themselves and why this technique
is still confined to a small community
of experts. Unfortunately, discovering
latent scalability bottlenecks through

The Catwalk Project -
A quick Development Path
for Performance Models

experience is painful and expensive.
Removing them requires not only
potentially numerous large-scale experi-
ments to track them down, prolonged
by the scalability issue at hand, but
often also major code surgery in the
aftermath. Not infrequently, this
happens at a moment when the man-
power is needed elsewhere, which is
especially true for applications on the
path to Exascale, which have to ad-
dress numerous technical challenges
simultaneously, ranging from hetero-
geneous computing to resilience.
Since such problems usually emerge
at a later stage of the development

Autumn 2013 e Vol. 11 No.2 e inSiDE

process, dependencies between their
source and the rest of the code that
have grown over time can make reme-
diation even harder.

If today developers decide to maodel the
scalability of their code, and many
shy away from the effort, they first
apply both intuition and tests at smaller
scales to identify so-called kernels,
which are those parts of the program
that are expected to dominate its
performance at larger scales. This step
is essential because modeling a full
application with hundreds of modules
manually is not feasible. Then they
apply reasoning in a time-consuming
process to create analytical models
that describe the scaling behavior of
their kernels more precisely. In a way,
they have to solve a chicken-and-egg
problem: to find the right kernels, they
require a pre-existing notion of which

Autumn 2013 e Vol. 11 No.2 e inSIDE

Figure 1: Many scalability bottlenecks are almost unnoticeable at lower scales but'k
once the number of processes is increased beyond a certain point.

therefore to provide a fl

tools to support key ac
e

performanc 7

this powerful thod
to a wider audience of
developers. The tool sui
to study and help
of applicatio ‘
dynamics, and p

The project is cc)r' 7.,__
Prof. Dr. Felix W
for Parallel Pr




Research School for Simulation Sciences
at Aachen. Further partners are the
Institute for Scientific Computing of
the Technische Universitat Darmstadt
(Prof. Dr. Christian Bischof), the Institute
of Computer Systems of the Swiss
Federal Institute of Technology Zurich
(Prof. Dr. Torsten Hoefler), Julich Super-
computing Centre, Forschungszentrum
Jilich (Dr.-Ing. Bernd Mohr), and the
Goethe Center for Scientific Computing
of Goethe University Frankfurt

(Prof. Dr. Gabriel Wittum)].

A first result of the Catwalk project,
after running for less than one year, is
a novel tool that instead of modeling
only a small subset of an application
program manually, generates an
empirical performance model for each
part of the target program auto-
matically, significantly increasing not
only the coverage of the scalability
check but also its speed [1]. All it takes
to search for scalability issues even in
full-blown codes is to run a manageable
number of small-scale performance ex-
periments, launch the tool, and compare
the extrapolated performance of the
worst instances to expectations. To
make this possible, we exploit several
assumptions:

\We take advantage of the observation
that the space of the function classes
underlying these madels is usually small
enough to be searched by a computer
program. An iterative refinement pro-
cess maximizes both the efficiency

of the search and the accuracy of our
models.

We abandon model accuracy as the pri-
mary success metric and rather focus
on the binary notion of scalability bugs.

Similar to a thread checker, every
scalability problem we identify is a suc-
cess as long as false positives that
send us in a wrong direction are rare.
False negatives are, of course, un-
desirable but acceptable as long as the
number of scalability bugs we find
justifies the effort.

\We create requirements models along-
side execution-time models. A com-
parison between the two can illuminate
the nature of a scalability problem.
Also, the generation of requirements
models is less affected by performance
variations.

Given that our tool relies on the standard
performance-measurement infra-
structures Scalasaca [2] and Score-P [3],
the extra software that we developed

is so lightweight that it is economically
feasible to provide it in production-level
quality. Finally, we generate not only

a list of potential bugs but also human-
readable models that can be further
elaborated to conduct a variety of
deeper analyses such as investigating
the possibility of cache spills.

This project is part of the DFG Priority
Programme 1648 Software for Exa-
scale Computing (SPPEXA). More infor-
mation can be found at
http://www.vi-hps.org/projects/catwalk/

Autumn 2013 e Vol. 11 No.2 e inSiDE

References

[11

[31

Autumn 2013 e Vol. 11 No.2 e inSIDE

Calotoiu, A., Hoefle
Wolf, F.
Using Automated

April 2010

an Mey, D., Biersdorff,
Diethelm, K., Eschweile
Kniipfer, A., Lorenz, D., - A.D.,
Nagel, W.E., Oleynik, Y.,
Saviankou, P., Schmidl, D., Shende,

Wagner, M., Wesarg, B.,

Score-P: A Unified Performance M

ment System for Petascale A|

Proceedings of the CiHPC: 5\\
High Performance Computing, H

PC Status
Konferenz der GauB-Allianz e.V., Schwetzi

Germany, June 2010, pages Bﬁ.
GauB-Allianz, Springer, 2012 '



