000014093 001__ 14093
000014093 005__ 20240708132816.0
000014093 0247_ $$2DOI$$a10.1002/pssb.201046365
000014093 0247_ $$2WOS$$aWOS:000287715600006
000014093 0247_ $$2ISSN$$a0370-1972
000014093 037__ $$aPreJuSER-14093
000014093 041__ $$aeng
000014093 082__ $$a530
000014093 084__ $$2WoS$$aPhysics, Condensed Matter
000014093 1001_ $$0P:(DE-HGF)0$$aSchmale, K.$$b0
000014093 245__ $$aElectronic conductivity of Ce(0.8)Gd(0.2-x)Pr(x)O(2-delta) and influence of added CoO
000014093 260__ $$aWeinheim$$bWiley-VCH$$c2011
000014093 29510 $$aArticle first published online: 7 OCT 2010
000014093 300__ $$a314 - 322
000014093 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000014093 3367_ $$2DataCite$$aOutput Types/Journal article
000014093 3367_ $$00$$2EndNote$$aJournal Article
000014093 3367_ $$2BibTeX$$aARTICLE
000014093 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000014093 3367_ $$2DRIVER$$aarticle
000014093 440_0 $$04914$$aPHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS$$v248$$x0370-1972$$y2
000014093 500__ $$aThe authors would like to thank the German Federal Ministry of Economics and Technology (BMWi) for founding in course of the MEM-OXYCOAL project. We also thank Dr. Lutz Kogel for his engaged contribution to the experimental setup and for developing the applied software packages. This article will be part of the dissertation of Kerstin Schmale.
000014093 520__ $$aDoped ceria and ceria based solid oxide solutions show a unique combination of oxygen ion mobility, electronic conductivity, and high catalytic activity for redox reactions. In this work, the minority conductivity of electrons has been measured directly as a function of the composition of ceria-praseodymia based solid solutions in order to maximize the electronic conductivity without depressing the oxygen ion mobility. The influence of Co as well as the Gd/Pr dopant ratio on the electronic conductivity of ceria-praseodymia pellets was studied for the compositions Ce0.8Gd0.2-xPrxO2-delta (0.05 <= x <= 0.15) with and without an additional Co content of 0.02 with respect to the formula. The Hebb-Wagner polarization technique was used with ion-blocking microcontacts. In the temperature range 700-800 degrees C, the presence of high amounts of praseodymium increases the p-type conductivity by a factor of more than 10 for oxygen partial pressures higher than 10(-10) bar. Co-doped ceria-gadolinia-praseodyinia solid solutions showed a further increase of the electronic conductivities in a partial pressure range where the Co-free materials showed the minimum of the electronic conductivities. It is assumed that the effect of the additional cobalt doping is due to electronic short circuits along the grain boundaries via segregated CoO. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
000014093 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000014093 588__ $$aDataset connected to Web of Science
000014093 650_7 $$2WoSType$$aJ
000014093 65320 $$2Author$$acerium oxide
000014093 65320 $$2Author$$aelectronic conductivity
000014093 65320 $$2Author$$aHebb-Wagner technique
000014093 65320 $$2Author$$apraseodymium oxide
000014093 7001_ $$0P:(DE-HGF)0$$aGrünebaum, M.$$b1
000014093 7001_ $$0P:(DE-HGF)0$$aJanssen, M.$$b2
000014093 7001_ $$0P:(DE-Juel1)129587$$aBaumann, S.$$b3$$uFZJ
000014093 7001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, F.$$b4$$uFZJ
000014093 7001_ $$0P:(DE-HGF)0$$aWiemhöfer, H.-D.$$b5
000014093 773__ $$0PERI:(DE-600)1481096-7$$a10.1002/pssb.201046365$$gVol. 248, p. 314 - 322$$p314 - 322$$q248<314 - 322$$tPhysica status solidi / B$$v248$$x0370-1972$$y2011
000014093 8567_ $$uhttp://dx.doi.org/10.1002/pssb.201046365
000014093 909CO $$ooai:juser.fz-juelich.de:14093$$pVDB
000014093 9131_ $$0G:(DE-Juel1)FUEK402$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000014093 9132_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000014093 9141_ $$y2011
000014093 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000014093 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000014093 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000014093 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000014093 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000014093 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$gIEK$$kIEK-1$$lWerkstoffsynthese und Herstellverfahren$$x0
000014093 970__ $$aVDB:(DE-Juel1)125970
000014093 980__ $$aVDB
000014093 980__ $$aConvertedRecord
000014093 980__ $$ajournal
000014093 980__ $$aI:(DE-Juel1)IEK-1-20101013
000014093 980__ $$aUNRESTRICTED
000014093 981__ $$aI:(DE-Juel1)IMD-2-20101013