000141012 001__ 141012
000141012 005__ 20240712112838.0
000141012 0247_ $$2doi$$a10.1016/j.electacta.2014.08.120
000141012 0247_ $$2WOS$$aWOS:000345226100021
000141012 037__ $$aFZJ-2013-06221
000141012 041__ $$aEnglish
000141012 082__ $$a540
000141012 1001_ $$0P:(DE-HGF)0$$aAntonio, Bertei$$b0$$eCorresponding author
000141012 245__ $$aElectrochemical Simulation of Planar Solid Oxide Fuel Cells with Detailed MicrostructuralModeling
000141012 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2014
000141012 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1417796369_21913
000141012 3367_ $$2DataCite$$aOutput Types/Journal article
000141012 3367_ $$00$$2EndNote$$aJournal Article
000141012 3367_ $$2BibTeX$$aARTICLE
000141012 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000141012 3367_ $$2DRIVER$$aarticle
000141012 520__ $$aAbstract: A quasi-two-dimensional physically-based model for the description of transport andreaction in planar solid oxide fuel cells (SOFC) is presented in this study. Electrochemistry andtransport phenomena in the cell are locally described in 2D using mass conservation equations andwell-established global electro-kinetics, coupled with the 1D representation of gas channels in both coflowand counter-flow configurations. The key feature of the model consists in the numericalreconstruction, through packing algorithms, of the three-dimensional microstructure of each porouslayer for an accurate evaluation of the effective properties. Coupling of a detailed microstructuralmodeling into the cell-level electrochemical model allows the prediction of the polarization behaviorfrom the knowledge of operating conditions and powder characteristics, thus eliminating the need forempirical correlations and adjusted parameters, which is typically the weak point of existing cell-levelmodels. The framework is used for the simulation of a short stack of anode-supported cells with LSMbasedcathode and 1.5mm thick anode support, developed and tested by Forschungszentrum Jülich.The effective properties of each layer are calculated and compared with available experimental data. Agood agreement is also reached when comparing simulated and experimental polarization curvesunder different operating conditions without fitting any parameter. Simulations show that at 800°C theactivation resistance in the cathode functional layer is the main contribution to the cell overpotential.In addition, the model suggests that gas concentration effects at the anode play an important role onthe global electrochemical response. The study shows that quantitative predictions can be obtainedusing this integrated approach, making it an attractive tool to assist the SOFC development.
000141012 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000141012 536__ $$0G:(DE-HGF)POF2-152$$a152 - Renewable Energies (POF2-152)$$cPOF2-152$$fPOF II$$x1
000141012 7001_ $$0P:(DE-Juel1)130445$$aMertens, Josef$$b1
000141012 7001_ $$0P:(DE-HGF)0$$aNicolella, Cristiano$$b2
000141012 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2014.08.120$$p151-163$$tElectrochimica acta$$v146$$x0013-4686$$y2014
000141012 8564_ $$uhttps://juser.fz-juelich.de/record/141012/files/FZJ-2013-06221.pdf$$yRestricted
000141012 909CO $$ooai:juser.fz-juelich.de:141012$$pVDB
000141012 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130445$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000141012 9132_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000141012 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000141012 9131_ $$0G:(DE-HGF)POF2-152$$1G:(DE-HGF)POF2-150$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vRenewable Energies$$x1
000141012 9141_ $$y2014
000141012 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000141012 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000141012 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000141012 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000141012 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000141012 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000141012 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000141012 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000141012 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000141012 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000141012 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000141012 920__ $$lyes
000141012 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000141012 980__ $$ajournal
000141012 980__ $$aVDB
000141012 980__ $$aI:(DE-Juel1)IEK-9-20110218
000141012 980__ $$aUNRESTRICTED
000141012 981__ $$aI:(DE-Juel1)IET-1-20110218