001     141012
005     20240712112838.0
024 7 _ |a 10.1016/j.electacta.2014.08.120
|2 doi
024 7 _ |a WOS:000345226100021
|2 WOS
037 _ _ |a FZJ-2013-06221
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Antonio, Bertei
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Electrochemical Simulation of Planar Solid Oxide Fuel Cells with Detailed MicrostructuralModeling
260 _ _ |a New York, NY [u.a.]
|c 2014
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1417796369_21913
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Abstract: A quasi-two-dimensional physically-based model for the description of transport andreaction in planar solid oxide fuel cells (SOFC) is presented in this study. Electrochemistry andtransport phenomena in the cell are locally described in 2D using mass conservation equations andwell-established global electro-kinetics, coupled with the 1D representation of gas channels in both coflowand counter-flow configurations. The key feature of the model consists in the numericalreconstruction, through packing algorithms, of the three-dimensional microstructure of each porouslayer for an accurate evaluation of the effective properties. Coupling of a detailed microstructuralmodeling into the cell-level electrochemical model allows the prediction of the polarization behaviorfrom the knowledge of operating conditions and powder characteristics, thus eliminating the need forempirical correlations and adjusted parameters, which is typically the weak point of existing cell-levelmodels. The framework is used for the simulation of a short stack of anode-supported cells with LSMbasedcathode and 1.5mm thick anode support, developed and tested by Forschungszentrum Jülich.The effective properties of each layer are calculated and compared with available experimental data. Agood agreement is also reached when comparing simulated and experimental polarization curvesunder different operating conditions without fitting any parameter. Simulations show that at 800°C theactivation resistance in the cathode functional layer is the main contribution to the cell overpotential.In addition, the model suggests that gas concentration effects at the anode play an important role onthe global electrochemical response. The study shows that quantitative predictions can be obtainedusing this integrated approach, making it an attractive tool to assist the SOFC development.
536 _ _ |a 123 - Fuel Cells (POF2-123)
|0 G:(DE-HGF)POF2-123
|c POF2-123
|f POF II
|x 0
536 _ _ |a 152 - Renewable Energies (POF2-152)
|0 G:(DE-HGF)POF2-152
|c POF2-152
|f POF II
|x 1
700 1 _ |a Mertens, Josef
|0 P:(DE-Juel1)130445
|b 1
700 1 _ |a Nicolella, Cristiano
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1016/j.electacta.2014.08.120
|0 PERI:(DE-600)1483548-4
|p 151-163
|t Electrochimica acta
|v 146
|y 2014
|x 0013-4686
856 4 _ |u https://juser.fz-juelich.de/record/141012/files/FZJ-2013-06221.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:141012
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130445
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-123
|2 G:(DE-HGF)POF2-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|b Energie
|1 G:(DE-HGF)POF2-150
|0 G:(DE-HGF)POF2-152
|2 G:(DE-HGF)POF2-100
|v Renewable Energies
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Technologie, Innovation und Gesellschaft
914 1 _ |y 2014
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21