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We present a comprehensive study of the equilibrium pair structure in fluids of nonoverlapping
spheres interacting by a repulsive Yukawa-like pair potential, with special focus on suspensions of
charged colloidal particles. The accuracy of several integral equation schemes for the static struc-
ture factor, S(q), and radial distribution function, g(r ), is investigated in comparison to computer
simulation results and static light scattering data on charge-stabilized silica spheres. In particular,
we show that an improved version of the so-called penetrating-background corrected rescaled mean
spherical approximation (PB-RMSA) by Snook and Hayter [Langmuir 8, 2880 (1992)], referred
to as the modified PB-RMSA (MPB-RMSA), gives pair structure functions which are in general
in very good agreement with Monte Carlo simulations and results from the accurate but nonana-
lytical and therefore computationally more expensive Rogers-Young integral equation scheme. The
MPB-RMSA preserves the analytic simplicity of the standard rescaled mean spherical (RMSA) so-
lution. The combination of high accuracy and fast evaluation makes the MPB-RMSA ideally suited
for extensive parameter scans and experimental data evaluation, and for providing the static input
to dynamic theories. We discuss the results of extensive parameter scans probing the concentration
scaling of the pair structure of strongly correlated Yukawa particles, and we determine the liquid-
solid coexistence line using the Hansen-Verlet freezing rule. © 2011 American Institute of Physics.
[doi:10.1063/1.3524309]

I. INTRODUCTION

The model system of hard spheres with Yukawa-type re-
pulsive pair interaction, commonly referred to as the hard-
sphere Yukawa (HSY) fluid, has been extensively used as a
reference system for a large variety of atomic systems includ-
ing plasmas and liquid metals,1–3 and alloys.4, 5 In the HSY
model, the pair potential is taken to be

βu(x) =
⎧⎨
⎩

∞, x = r/σ < 1,

γ
e−kx

x
, x > 1,

(1)

where σ = 2a is the hard-core diameter, r is the center-to-
center distance between two particles, and β = 1/(kB T ) with
absolute temperature T and Boltzmann’s constant kB . The di-
mensionless coupling parameter γ and the screening param-
eter k ≥ 0 characterize, respectively, the strength and range
of the Yukawa potential tail. For the important class of re-
pelling Yukawa particles exclusively considered in this paper,
γ is nonnegative. Changing k allows for the variation of the
pair potential from pure hard-core interactions to a Coulomb
potential, the latter describing a one-component plasma-like
behavior. This versatility is the reason for the prominent role
of the HSY model in liquid state theory.

In addition to atomic systems, the HSY model has found
its most widespread application in the study of the equilib-

a)Electronic mail: m.heinen@fz-juelich.de.

rium structure, dynamics and phase behavior of macromolec-
ular systems, including suspensions of large charge-stabilized
colloidal spheres,6–17 and solutions of globular charged
proteins,18, 19 micelles20, 21 and short DNA fragments.22 In the
standard Derjaguin-Landau-Verwey-Overbeek (DLVO) the-
ory of colloidal charge stabilization,23 the screened Coulomb
repulsion of two charged colloidal particles (macroions)
caused by the overlap of their diffuse microionic clouds, is
represented by Eq. (1) with the coupling parameter deter-
mined by

γ = L B

σ

(
ek/2

1 + k/2

)2

Z2. (2)

Here, L B = βe2/ε is the solvent-characteristic Bjerrum
length in Gaussian units, ε is the solvent dielectric constant,
and Z is the effective macroion charge number in units of the
proton elementary charge e. For monovalent counterions re-
leased from the macroion surfaces, and added 1-1 electrolyte,
the screening parameter is determined by

k2 = L B/σ

1 − φ

(
24φ|Z | + 8πnsσ

3
)
, (3)

where n and φ = (π/6)nσ 3 are, respectively, the colloidal
number concentration and volume fraction, and 2ns is the
concentration of added monovalent salt ions. The electric
DLVO potential given by Eqs. (1)–(3) has been derived, as the
potential of mean force in the limit φ → 0, on the basis of the
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linearized Poisson-Boltzmann theory23 and the linear mean-
spherical approximation (MSA) for a highly asymmetric ionic
mixture,24–26 on assuming point-like (monovalent) counter-
and coions (microions) and L B Z2/σ � 1. For more strongly
charged macroions, the DLVO potential can be still used, but
Z should be interpreted then as an effective macroion charge
number smaller than the bare one, since it includes a correc-
tion for the fraction of surface-condensed counterions. The
effective macroion charge Z in relation to the bare one can be
estimated using simplifying mean-field-type cell model27, 28

or selfconsistent jellium model calculations,22, 29, 30 and non-
mean field extensions describing macroion overcharging and
ion-pairing effects in multivalent electrolytes31. Due to the ap-
proximative nature of all these calculations, different values
for Z are obtained.

The factor 1/(1 − φ) in Eq. (3), relevant for larger colloid
concentrations, has been discussed in Refs. 32 and 33. It cor-
rects for the free volume accessible to the microions, which
can not penetrate the colloidal cores.

In the present paper, we are not concerned with the
on-going discussion on how the effective charge is quanti-
tatively related to the bare one, with the latter commonly
defined on a more fundamental level where macroions and
microions are treated on equal footing as (nonpolarizable)
charged hard spheres immersed in a structureless fluid. Nor
will we be concerned here with nonpairwise additivity effects
appearing as macroion screening which can be accounted for
approximately by a concentration-dependent cutoff of the
electric DLVO potential.34 It has been shown in many appli-
cations that the static structure factor, S(q), of a large variety
of charge-stabilized colloids can be consistently described on
the basis of the electric DLVO pair potential, with the effec-
tive charge Z as the basic fitting parameter.

In applying the HSY model to macromolecular ionic sys-
tems, one assumes that the influence of attractive dispersion
forces on the macroions is negligible relative to the electric
repulsion. This assumption is justified when the macromolec-
ular particles are strongly charged and when the electrostatic
screening described by k is sufficiently small, like in low-
salinity systems, or when the dielectric mismatch of particles
and solvent is small.

The hard-core part of the HSY potential is irrelevant
for the most important class of charged colloid systems
where contact configurations are extremely unlikely. These
systems have in common a practically zero contact value,
g(r = σ+) ≈ 0, of the radial distribution function (rdf), with
g(r ) quantifying the conditional probability in an isotropic
fluid of finding a particle a distance r from a given one. All
these systems share the geometrical mean particle distance,
d̃ = n−1/3, as the natural characteristic length unit. In terms
of this length unit,

βu(x̃ > σ/d̃) = γ̃ exp{−k̃ x̃} (4)

with x̃ = r/d̃ and reduced potential parameters γ̃ = γ σ/d̃
and k̃ = kd̃/σ . Since the hard-core overlap region, x̃ < σ/d̃ ,
is of no physical relevance for these systems, the Yukawa po-
tential in Eq. (4) can be extrapolated down to x̃ = 0 with-
out affecting the microstructure. In the same length unit, the

Ornstein-Zernike equation3 is expressed as

h(x̃) = c(x̃) +
∫

dx̃′ h(x̃ ′)c(|x̃ − x̃′|), (5)

where c(r ) and h(r ) = g(r ) − 1 are, respectively, the direct
and total correlation functions related to the radial distribu-
tion function. We see here that the class of HSY systems of
zero contact value are fully characterized by the two dimen-
sionless parameters γ̃ and k̃. On the other hand, four dimen-
sionless parameter groups which are experimentally control-
lable to some extent, namely {L B/σ, Z , nsσ

3, φ}, enter into
the DLVO potential. Thus, different combinations of these
four parameters sharing the same (γ̃ , k̃) values have identical
functions S(q) and g(r ), for the wavenumber q and the pair
distance r expressed in units of d̃ , and under the proviso that
they fall into the g(σ+) ≈ 0 class. The phase diagram of these
(effectively point-like) Yukawa particles of hard-core interac-
tions masked by the Yukawa tail is quite simple, with a single
fluid phase that can freeze into a fcc or bcc solid. The diagram
has a single triple point but no critical point since the poten-
tial is purely repulsive.35–38 A recent discussion of the critical
point in hard-sphere plus attractive Yukawa-tail fluids is given
in Ref. 39. The extended phase diagram including HSY sys-
tems with g(σ+) > 0, i.e., systems where the rdf is discon-
tinuous at contact distance, is somewhat more complicated,
showing an additional fluid-fcc-bcc triple point.34, 40 Systems
where the hard core matters are characterized by three dimen-
sionless parameters, namely by (γ, k, φ), with σ as the natu-
ral length unit. Systems of equal (γ, k, φ) share the same S(q)
expressed as a function of qσ .

An important feature of the HSY model is that, in con-
junction with the MSA closure relation,3

c(r > σ ) = −β u(r ), (6)

for the direct correlation function c(r ), and the exact zero-
overlap condition g(r < σ ) = 0, an essentially analytic so-
lution of the Ornstein-Zernike equation is obtained for S(q).
This is a desirable feature since S(q) is the key quantity de-
termined in static scattering experiments. The MSA solution
was first derived for general k by Waisman,41 and in the limit
of no screening (k = 0) also by Palmer and Weeks.1 The orig-
inal MSA solution by Waisman includes a rather complex set
of algebraic equations from which the unique, physically al-
lowed structure factor must be deduced. The MSA solution
was further simplified by Blum and Hoye,42 and Cummings
and Smith.43, 44 A particularly simple form of the MSA solu-
tion was obtained more recently by Ginoza45 (see also Ref. 5),
invoking a simple quartic algebraic equation from which the
physical root is straightforwardly deduced.

While the MSA solution applies well to dense suspen-
sions of more weakly charged macroions such as charged
micelles,20, 21 it is known to fail for the important case of
strongly charged colloidal particles under low-volume frac-
tion conditions such as suspensions of polystyrene spheres in
water. Due to the nonexact treatment of shorter-ranged corre-
lations in the MSA closure relation which is only asymptoti-
cally exact, nonphysical negative values of g(r ) are predicted
near the contact distance σ of two particles for low concentra-
tions and strong repulsion. This undesired feature is absent in
the case of an attractive Yukawa tail. As shown by Hansen and
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Hayter,46 this severe deficiency of the MSA can be remedied
by increasing the hard-sphere diameter, σ , of the HSY spheres
at fixed particle concentration to a larger value σ ′ > σ , with-
out altering the form of the Yukawa-tail of the pair poten-
tial. The rescaled effective diameter σ ′ is determined from
the physical constraint that the g(r ) in these systems must
be continuous, i.e., from requiring the Gillan condition that
g(r = σ ′+; φ′) = 0 (Ref. 47) where φ′ = φ(σ ′/σ )3 > φ is
the rescaled volume fraction. The underlying physical pic-
ture is that in strongly repulsive systems, where the finite par-
ticle size plays no physical role, a family of systems with
same soft Yukawa tail but different hard-sphere diameters
should share the same g(r ), provided all diameters are smaller
than σ ′. Since the MSA is reasonably accurate at larger vol-
ume fractions without featuring negative values for the rdf,
gRMSA(r ) = gMSA(r ; σ ′, φ′) becomes a reasonably good ap-
proximation for the rdf characterizing this family of systems.
The diameter-rescaled MSA is referred to as the RMSA.46

The RMSA scheme of Hansen and Hayter preserves the
analyticity of the original MSA solution without sharing its
deficiency at low φ and for strong Yukawa tail repulsion. This
is the reason why the RMSA is widely used to this date as an
efficient tool for calculating the pair structure, for fitting scat-
tering data (see, e.g., its implementation in Ref. 48), and for
delivering the static input to theoretical schemes predicting
equilibrium and nonequilibrium colloidal transport properties
and phase boundaries.6, 8, 13, 16, 49, 50 Note here that an exten-
sion of the rescaled MSA to mixtures of hard-sphere Yukawa
particles of differing diameters and Yukawa tails has been dis-
cussed by Ruiz-Estrada et al.26

The RMSA constitutes a considerable improvement over
the MSA. However, comparisons with computer simulations
and results from the highly accurate but numerically more ex-
pensive Rogers-Young (RY) integral equation scheme,51 re-
veal that the RMSA typically tends to underestimate the local
ordering of strongly repulsive particles. This is most strongly
noticed in the underestimated principal peak values of S(q)
and g(r ), and in the overestimation of the reduced osmotic
compressibility limq→0 S(q). Therefore, it is desirable to find
an improved scheme that takes advantage of the analytic sim-
plicity of the RMSA solution. Using a simple argument re-
lated to the uniform neutralizing charge background of the
one-component plasma model (OCP), Snook and Hayter52

provided such an improved scheme. They have demonstrated
this in comparison with a number of simulation results for
g(r ) (see also Ref. 53). Unfortunately, in spite of its sim-
plicity and usefulness, their so-called penetrating-background
(PB) corrected RMSA scheme (PB-RMSA, for short) has re-
mained largely unnoticed and unused both in the colloid and
liquid metal communities.

In Sec. II, we summarize the essentials of Snook and
Hayter’s PB-RMSA scheme, and we improve its accuracy
by a straightforward modification of the underlying screen-
ing parameter. We refer to our modified scheme as the MPB-
RMSA method. The MPB-RMSA further improves the gen-
eral agreement with simulation data for S(q) and g(r ), and for
the osmotic compressibility in particular. The algorithm of the
MPB-RMSA is summarized in the Appendix, for readers in-
terested in its implementation.

In Sec. III, the good performance of the fast MPB-RMSA
is assessed over the full HSY fluid-phase space, in com-
parison with a large number of RY and Monte Carlo (MC)
simulation results, and with predictions of the pair structure
by the less accurate hypernetted-chain (HNC) and RMSA
integral equation schemes. For strongly correlated particles
of high surface charge under low-salt conditions, the accu-
racy of the predicted S(q) and g(r ) is unprecedented by any
other Ornstein-Zernike integral scheme we are aware of with
comparable computational simplicity. Also, for less strongly
repulsive macroions, where the finite core matters, the MPB-
RMSA pair structure functions are in good agreement with re-
sults from the computationally far more elaborate RY scheme
and MC simulations. We show that the degree of thermody-
namic inconsistency is reduced in going from the RMSA to
the MPB-RMSA solution.

In addition, we compare the MPB-RMSA results for S(q)
with static light scattering experiments, which we have per-
formed on suspensions of charged silica spheres in an organic
solvent. This serves to demonstrate the applicability of the
HSY-DLVO model to experimental systems. That the MPB-
RMSA is well suited for extensive parameter scans, is demon-
strated in Sec. IV where we study the concentration scaling
of the pair structure functions of strongly charged particles
at various salt contents. Using the empirical Hansen-Verlet
freezing rule, we determine the fluid-solid coexistence line
and the fluid-phase regimes in the (T̃ , k̃, φ) space, for the class
of systems with hard-core interactions masked by the longer-
ranged Yukawa repulsion. Here, T̃ is a reduced temperature
related to γ̃ and k̃. Our conclusions are given in Sec. V.

II. SIZE RESCALING AND IMPROVED RMSA
SCHEMES

In this section, we briefly summarize the essentials of
the RMSA scheme by Hansen and Hayter.46, 54 We discuss
the physically motivated particle-background correction (PB-
RMSA) of this scheme introduced by Snook and Hayter.52, 53

We proceed to describe a simple modification of the screening
parameter entering into the PB-RMSA scheme which further
improves the accuracy.

A. Size-rescaled MSA scheme

For the (effective) pair potential u(r ) of the HSY model,
the task is to determine the radial distribution function g(r ),
and the static structure factor S(q), related to each other by3

g(r ) = 1 + 1

2π2nr

∫ ∞

0
dq q sin(qr )[S(q) − 1]. (7)

As noted in the introduction, the one-component
Ornstein-Zernike equation,

h(x) = c(x) + 6φ

π

∫
dx′ c(x ′)h(|x − x′|), (8)

allows in combination with the approximate MSA closure
c(x > 1) = −βu(x), and the zero-overlap condition h(x < 1)
= −1, where x = r/σ , to obtain an essentially analytic solu-
tion for S(q), and for the Laplace transform of r g(r ).41, 43–45, 55
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The MSA solution is reasonably accurate for large concentra-
tions and weak Yukawa repulsion. However, it predicts non-
physical negative values of g(x) for strong Yukawa repulsion
and low concentrations. This can be readily noticed from the
zero-concentration limit, gMSA(x > 1) = 1 − β u(x), of the
MSA rdf, giving negative values for radial distances where
u(x) > kB T . Negative values of gMSA(x) are found addition-
ally also when the RMSA is applied to highly concentrated
systems in the supercooled fluid regime at large values of the
coupling parameter γ .56

Hansen and Hayter46 have provided a simple rescaling
prescription which remedies the shortcoming of the MSA so-
lution for strongly repelling particles where β u(x = 1+) � 1
and consequently g(x = 1+) ≈ 0, i.e., for systems where the
hard core plays no role. In the RMSA, one considers in
place of the actual system a system of size-inflated spheres
of rescaled hard-core diameter σ ′ = σ/s, and rescaled vol-
ume fraction φ′ = φ/s3, where the inflation parameter s, with
0 < s ≤ 1, is determined by the Gillan condition gMSA(x ′

= 1+; φ′) = 0 for x ′ = x s = r/σ ′. The MSA solution pro-
vides an analytical expression for the contact value of the
rdf, allowing for a straightforward determination of s, e.g., by
a Newton-Raphson type method. We adhere to the standard
convention of using the same function names for g, c, and h
when expressed in differing length units, with the employed
units identified by the function argument variable. While per-
forming the hard-core inflation, the concentration n and the
Yukawa tail, u(r > σ ′), are left unchanged. This implies that
the potential parameters in Eq. (1) must be rescaled with re-
spect to the length unit σ ′ according to

γ ′ = γ s (9)

k ′ = k/s. (10)

The RMSA solution is given by gRMSA(r ) = gMSA(r ; φ′, σ ′),
which by construction is a non-negative function going con-
tinuously to zero at r = σ ′. It approximates to reasonable ac-
curacy the rdf of a family of strongly coupled HSY systems of
varying particle sizes σ but equal concentration n and Yukawa
tail (i.e., equal γ σ and equal k/σ ). Since all members of the
family share the same tail u(r > σ ′), they share in particular
the same potential value

�is = βu(r = dis), (11)

at the ion-sphere diameter distance,

dis =
(

6

πn

)1/3

= σ φ−1/3 = σ ′ φ′−1/3
, (12)

used in plasma physics as a characteristic length scale.3

As k → 0, �is reduces to the OCP coupling constant. For
strongly repulsive particles where the RMSA solution applies,
the ordering σ < σ ′ < dis is fulfilled.

The RMSA is an established method providing structure
functions in reasonably good agreement with simulation re-
sults and many experimental data on charge-stabilized sus-
pensions. Similar to certain other integral equation schemes
including the Percus-Yevick (PY) and HNC approximations,
it lacks thermodynamic consistency.3, 51 Another artefact of
the RMSA of minor importance is a kink in g(r ) at r = σ ′

(see Sec. III) caused by the blowing-up of the diameter.
Owing to its simplicity, the RMSA solution has been exten-
sively used for charged globular colloids and proteins. It tends
to underestimate the principal peaks of the exact g(r ) and
S(q) as obtained in simulation calculations, with larger dif-
ferences for large effective charges Z (see, e.g., Refs. 13, 18,
and 57). To obtain quantitative agreement with the simulation-
generated peak values of S(q), the employed coupling param-
eter γ has to be enlarged above its physical value, in the case
of charged colloids usually by increasing the effective charge
number in Eq. (2). The so adjusted RMSA S(q) is over-
all in quantitative agreement with its simulation counterpart,
and the result from the RY scheme which for the repulsive
three-dimensional HSY model has been shown to be highly
accurate.

B. PB-RMSA scheme

Being forced to treat γ as an adjustable parameter in
RMSA calculations is unsatisfactory, in particular when ac-
curate values of the effective charge number are searched for.
To improve the RMSA, Snook and Hayter52 have proposed
a reinterpretation of the coupling and screening parameter
based on a penetrating microion background (PB) correction
argument. The PB-RMSA scheme by Snook and Hayter is in
improved agreement with the simulation structure functions.
In the following, we briefly describe the PB-RMSA scheme
and critically discuss the motivation of the employed PB cor-
rection. We will propose a straightforward modification of the
PB-RMSA leading to a further performance improvement. In
most considered cases, our MPB-RMSA scheme yields very
good results, requiring no adjustment of the coupling param-
eter to unrealistic values. Specific systems where the MPB-
RMSA becomes less accurate are discussed in the following
Sec. III, with a summary of approximate global error bounds
given in the conclusions.

At this point already we stress that the PB correction, un-
derlying the PB-RMSA and the modified PB-RMSA, is nei-
ther rigorous nor without alternatives. It is less general and
less justified than the hard-core rescaling argument discussed
before. Nevertheless, the PB correction improves significantly
the performance of the RMSA in the full fluid parameter
space.

The PB correction argument by Snook and Hayter re-
lies on the observation that in the derivation of the effec-
tive DLVO pair potential in Eqs. (1)–(3), the degrees of free-
dom of all the point-like microions have been integrated out,
so that their presence is felt only through the values for Z
and k. Snook and Hayter52, 53 argue, in the spirit of the one-
component plasma model (see Ref. 1), that this is consistent
with assuming vanishing spatial correlations,

gCi (r ) ≡ 1 and gi j (r ) ≡ 1, (13)

between colloids and microions, and between all microion
species. Here, gCi (r ) and gi j (r ) are, respectively, the col-
loid (C)—microion and microion-microion radial distribu-
tion functions, with indices i and j labeling the various
microionic species. According to Eq. (13), the microions
are uniformly smeared out in space, penetrating also the
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colloidal hard cores. While inserting Eq. (13) into the multi-
component coupled Ornstein-Zernike equations3 describing a
primitive model system leads indeed to a description that cou-
ples the colloidal macroion species to itself only, one should
notice that a DLVO-type HSY pair potential can be derived
without invoking the crude assumption of a uniformly pen-
etrating microion background. This has been shown, e.g., in
Refs. 25, 58–60, where the non-negligible interionic correla-
tions are described more realistically using combinations of
MSA and HNC closure relations, respecting the hard core of
the colloids. Note further that Eq. (13) in conjunction with
the local electro-neutrality condition3 results in the prediction
that S(q → 0) = 0, which for k > 0 is violated by the actual
HSY structure factor.

To allow for analytic progress, let us accept the uni-
form penetrating background assumption in Eq. (13) as a use-
ful first approximation. Then, the total charge of uniformly
smeared out added salt ions inside the colloidal cores is zero.
The monovalent counterions released from the colloid sur-
faces, however, lead to a reduction of the total charge inside
a colloidal sphere from Z to Z (1 − φ). For small values of
φ found in low-salinity charge-stabilized systems, the charge-
reduction effect predicted on the basis of Eq. (13) often ap-
pears to be negligibly small. However, the systems of masked
hard-core interactions must be described by the rescaled ver-
sion of the MSA which invokes a much larger rescaled vol-
ume fraction φ′. To correct for the charge reduction within the
RMSA picture, the colloid charge number should be enlarged
from Z to

Z∗ = Z

1 − φ′ . (14)

Incidentally, a relation analogous to Eq. (14) but with un-
rescaled volume fraction, relating the bare macroion charge to
the effective one-component one, follows from the primitive
model when all direct correlations are treated in MSA, and
when the high-temperature limit is taken where k � 1 and
γ � 1.25, 59 Only in this limit of dominating thermal kinetic
energy, one is allowed to treat the microions as a uniform,
non-penetrating background.58

The corrected Z∗ substituted into Eq. (2) leads to the en-
larged background-corrected coupling parameter

γ ∗ = γ ′

(1 − φ′)2
. (15)

If γ ∗ is used in the RMSA with unchanged screening param-
eter k ′, a system is modeled with a pair potential larger than
the original one for all distances r . Thus the RMSA screening
parameter k ′ must be corrected (enlarged) as well. Snook and
Hayter argue that the background correction γ ′ → γ ∗ should
be accompanied by a screening parameter correction k ′ → k∗,
with k∗ > k ′, performed such that the background-corrected
HSY potential u∗(r ) remains unchanged at the ion-sphere di-
ameter, i.e., they demand that βu∗(dis) = �is, with �is accord-
ing to Eq. (11). This yields the correction

k∗ = k ′ − 2φ′1/3 log(1 − φ′), (16)

in units of the rescaled diameter σ ′. The PB correction rules
in Eqs. (15) and (16) are easily implemented into the standard

FIG. 1. (a) Sketch of HSY pair potentials in units of kB T (not to scale) used
in the PB-MSA, and MPB-MSA schemes, respectively, for a system requiring
no size rescaling. (b) As in (a), but for a system requiring size rescaling. The
solid black curve, labeled as MSA, represents the physical pair potential u(r )
given by Eqs. (1)–(3). Blue curves: βu∗(x); red curves: βu∗

mod(x). In (b) the
indicated 1/s = σ ′/σ values are those of the various rescaled diameters σ ′
in units of the physical diameter σ . Note here that σ < σ ′

RMSA < σ ′
P B-RMSA

< σ ′
MPB-RMSA = σ ∗.

RMSA algorithm by applying them in each incremental step
of the hard-core inflation from the actual value σ to σ ′ = σ/s,
with s determined by the Gillan condition. The rescaled di-
ameter σ ′ in PB-RMSA is larger than in RMSA, owing to the
stronger repulsive forces derived from the steeper potential
u∗(r ) (see Fig. 1).

By comparison to MC simulations of g(r ) for a se-
ries of systems with g(σ+) = 0, Snook and Hayter have
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demonstrated the improved performance of the PB-RMSA
relative to that of the RMSA. The PB correction is indepen-
dent of the hard-core inflation. Therefore it can be applied also
in the special case of systems with g(σ+) > 0 and s = 1. In
Sec. III B, we demonstrate that the PB-RMSA for the positive
contact value case, which we denote as the PB-MSA, is also
of improved accuracy, here in comparison to the unrescaled
MSA.

The potential parameters in Eqs. (15) and (16), obtained
from the simplifying uniform microion background assump-
tion in Eq. (13), describe a severely altered pair potential as
illustrated in Fig. 1. The Yukawa tail of the pair potential
u∗(r ) used in the PB-RMSA, decays more steeply than the
tail of u(r ), intersecting the latter at r = dis, i.e., at x = φ−1/3.
In contrast to the PB-RMSA, the RMSA size-rescaling itself
leaves u(r ) unchanged not only at the ion-sphere diameter, but
for all distances except for the inflated hard-core region which
is virtually never probed by the colloids.

There is some ambiguity in selecting dis as the pair dis-
tance where the potential value is kept fixed. With equal right,
one could select the potential value at the somewhat smaller
simple-cubic geometric distance d̃ = n−1/3 ≈ 0.8dis. How-
ever, results for g(r ) and S(q) which we have obtained from
our PB-RMSA code using d̃ in place of dis, are of simi-
larly good accuracy in general with no overall improvement.
Therefore, following Snook and Hayter, in our PB-RMSA
code we shall keep the potential value fixed at r = dis.

The PB correction in Eq. (15) is based on the assump-
tion that γ is independent of k. Within the primitive model of
charged colloids leading to the effective DLVO potential, on
first sight it seems more reasonable to enforce the condition
u∗(dis) = u(dis) for k∗ determined from Eq. (2) in combina-
tion with Eq. (14). The resulting variant of the PB-RMSA,
which we denote as the implicit PB-RMSA, gives an im-
plicit equation for k∗, the solution of which can be expressed
in terms of Lambert’s W-function. The k∗ and γ ∗ values of
the implicit PB-RMSA are larger than the values given by
Eqs. (15) and (16), therefore describing a steeper pair po-
tential. We have tested the performance of the implicit PB-
RMSA, finding that as a consequence of the steeper u∗(r ), the
RMSA-typical underestimation of the peak values in S(q) and
g(r ) is rendered into a severe overestimation. For this reason,
the implicit PR-RMSA has to be dismissed.

In view of the inadequacy of the uniform background as-
sumption and the discussed ambiguities in formulating the
PB-correction of u(r ), we conclude that the PB-RMSA is jus-
tified in essence only by its success in improving the perfor-
mance of the RMSA solution of the HSY model, with the
additional benefit of its analytic simplicity.

C. Modified PB-RMSA scheme

The standard PB-RMSA scheme discussed so far im-
proves the accuracy of the underlying RMSA. Yet, for identi-
cal physical values of γ and k in the PB-RMSA, RY scheme
and MC simulations, we still observe in the PB-RMSA a
noticeable underestimation of the principal peaks in S(q)
and g(r ).

In order to further improve the accuracy of the PB-RMSA
scheme, we propose here an additional concentration rescal-
ing motivated by the specific form of the screening parameter
k in Eq. (3). As we have noted before, the factor 1/(1 − φ) in
Eq. (3) corrects for the free volume accessible to the pointlike
(on the scale of the colloids) microions. On the other hand,
within the simplifying uniform microion background picture
underlying the PB-RMSA, the free volume has been already
corrected for in using Eq. (14). Thus, in order to avoid double
correction of the screening parameter in doing a PB-RMSA
calculation, we propose to replace the screening parameter k
in the set of given physical input parameters (k, γ, φ) by the
modified value

kmod = (1 − φ)k, (17)

where φ is the physical volume fraction. This straightforward
modification of the input value k constitutes the modified PB-
RMSA (MPB-RMSA), which we refer to as the MPB-MSA
scheme in the special case of s = 1. Figure 1 illustrates that
the modified pair potential, u∗

mod(r ), used in the MPB-RMSA
calculation always lies above the PB-RMSA potential u∗(r ),
so that u∗

mod(dis) = �mod
is > �is. Therefore, the rescaled diam-

eter σ ∗ in the MPB-RMSA scheme is somewhat larger than
the rescaled one in the PB-RMSA scheme (see Fig. 1).

With decreasing φ the MPB-RMSA solution approaches
the PB-RMSA and RMSA solutions. In the limit γ → 0 (e.g.,
Z → 0) or k → ∞, of a vanishing Yukawa tail, the (M)PB-
RMSA and RMSA solutions all reduce to the analytic Percus-
Yevick solution of neutral hard spheres. The latter is known
to give accurate pair functions of hard-sphere systems pro-
vided that φ � 0.35. At larger φ, it underestimates g(σ+)
and slightly overestimates the principal peak in the structure
factor.

The replacement k → kmod is not based on a rigorous ar-
gument. It is only heuristically motivated, and draws its justi-
fication from the very good performance of the MPB-RMSA
for an arbitrary repulsive HSY system, not restricted to pair
potentials of the special DLVO-type. In Sec. III, it will be
shown that the MPB-RMSA scheme is in general in excel-
lent agreement with pair structure function results obtained
from simulations, RY calculations and light scattering exper-
iments. A comprehensive description of the algorithm used in
our MPB-RMSA code is given in the Appendix.

D. Two alternative integral equations

The (M)PB-RMSA schemes are based on the analytic
MSA solution for the HSY model. There exist alternative
equation schemes which have been applied to the HSY model,
but these are in general purely numerical. The most frequently
used numerical schemes for charge-stabilized colloids, are
the hypernetted chain (HNC)61 and Rogers-Young51 meth-
ods which are computationally more expensive. Therefore,
the HNC and RY methods should be preferred over the MPB-
RMSA only if a significant gain in accuracy is achieved. As
we will show in Sec. III, this requirement rules out the HNC
method for most of the HSY systems we have studied. The
HNC approximation underestimates systematically the prin-
cipal peak values both in S(q) and g(r ), while only mildly
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improving the performance over the numerically much faster
RMSA. Aside from not showing the nonphysical kink in g(r )
at r = σ ′ predicted by the MPB-RMSA (as well as by the
PB-RMSA and the RMSA), we did not find system parame-
ters {σ, γ, k, φ} for which the accuracy of the HNC comes up
to that of the MPB-RMSA.

The elaborate RY method has been found, from compari-
son with simulation results of S(q) and g(r ), to perform excel-
lently for the repulsive HSY model. We have confirmed this
finding for all considered systems covering a broad range of
system parameters.

We have used the standard RY scheme which interpolates
continuously between the PY closure at short and the HNC
closure at long distances, by a single-parameter mixing func-
tion. The RY hybrid closure is motivated by the observation
made for the repulsive HSY potential, and for purely repul-
sive inverse power potentials, that the exact S(q) is bracketed
at small q and at the principal peak position by the PY and
HNC predictions. The RY mixing parameter is determined
by imposing local thermodynamic self-consistency, i.e., by
enforcing equality between the compressibility equation of
state

lim
q→0

S(q) = kB T

(
∂n

∂p

)
T

, (18)

and the compressibility obtained from the density (concentra-
tion) derivative of the virial pressure

pv = nkB T − 2π

3
n2

∫ ∞

0
dr r3 g(r )

∂u(r )

∂r
. (19)

In taking the density derivative, the weak density dependence
of the mixing parameter is disregarded (imposing local con-
sistency only), and for colloids also the concentration de-
pendence of the effective pair potential. For colloids, S(0)
:= limq→0 S(q) relates to the osmotic isothermal compress-
ibility. How precisely a state-dependent effective pair poten-
tial modifies the pressure, energy and compressibility equa-
tions of state is a subtle question still under debate.62–69 The
present work is concerned with the pair structure in HSY
fluids only, not addressing its relation to the thermodynamic
properties of systems with state-dependent interactions.

Different from the RY scheme, the (M)PB-RMSA and
HNC methods are thermodynamically inconsistent. Owing to
its local thermodynamic consistency, the RY scheme is ex-
pected to give accurate values of S(q) in particular at small
q. We use the RY scheme to test the predictions of the MPB-
RMSA for S(0), and to quantify the improvement in thermo-
dynamic consistency in going from the RMSA to the MPB-
RMSA scheme.

A general conclusion drawn from the comparison of the
MPB-RMSA and RY scheme structure functions with MC
data described in the following section, is that the static struc-
ture factor is nearly always predicted with excellent accuracy
by both methods for same input parameters, while a remnant
principal peak underestimation in g(r ) is found in case of the
MPB-RMSA. Recall, however, that the computational load of
the RY scheme is much higher. Moreover, it does not give an-
alytic expressions for S(q) and g(r ) which could be used, e.g.,
as input into dynamic theories.

III. PERFORMANCE OF THE MPB-RMSA

The integral equation and MC simulation results dis-
cussed in this section have been obtained using a HSY pair
potential in the form of Eqs. (1)–(3) which describe the elec-
trosteric repulsion of microion-dressed colloidal macroions.
We have tested the performance of various integral equation
schemes, most notably here the (M)PB-RMSA, in compari-
son to MC results, and static light scattering (SLS) data from
suspensions of charged silica spheres. Systems with a broad
range of interaction parameters have been examined, from
systems with strong Yukawa repulsion close to freezing down
to systems with a weak Yukawa tail where the physical hard
core plays a role. Only a representative selection of results
is shown here, for different values of φ, ns , L B/σ and Z
which are to some extent under experimental control. The MC
simulations were performed using in general N = 512 parti-
cles placed in a periodically repeated cubic simulation box. In
strongly correlated particle systems with long-range Yukawa
repulsion, a larger number N = 800 was used, for improved
statistics and resolution of the principal peak region of S(q).
We first discuss systems with strong Yukawa repulsion. Next,
systems with a weak Yukawa tail are considered. Moreover,
we test the degree of thermodynamic consistency of the con-
sidered integral equation schemes.

A. Systems with strong Yukawa repulsion

Systems with strong Yukawa repulsion, where βu(σ+)
= γ exp{−k} � 1, are characterized by a (practically) zero
likelihood for contact configurations so that the hard core
plays no role. Strong Yukawa repulsion of colloidal particles
is observed for large charge numbers and sufficiently low salt
concentrations.

1. Integral equations in comparison to MC simulations

As a representative class of colloidal systems with strong
and long-range Yukawa repulsion, we consider spheres of di-
ameter σ = 200 nm and effective charge number Z = 100,
immersed under zero-added salt conditions (ns = 0) in a
weakly polarizable solvent (ε = 10, T = 297 K) of Bjerrum
length L B = 5.62 nm. For these parameters, the reduced po-
tential at contact is typically quite large, e.g., βu(σ+) = 260
for φ = 10−4. Figure 2 shows our integral equations and MC
simulation results for S(q) and g(r ) at various volume frac-
tions, and Z assumed to be concentration independent. We
will exemplify further down that Z is in general φ-dependent
for an actual experimental system. The considered volume
fractions cover the range from dilute systems with moderate
particle correlations to more concentrated systems with strong
pair correlations.

The depicted RMSA curves are in fair qualitative agree-
ment with the MC-generated pair structure functions. As ex-
pected, the RMSA underestimates the principal peak heights,
S(qm) and g(rm), at the positions qm and rm , respectively. The
HNC approximation improves only slightly the accuracy of
the RMSA. The RY-scheme, on the other hand, is in excellent
agreement with the MC data at all considered φ. It slightly
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FIG. 2. Static structure factor, S(q), and radial distribution function, g(r ),
of a zero-salinity system at volume fractions φ as indicated. Open symbols
are MC simulation data in comparison with various integral equation scheme
predictions as indicated. The insets magnify the principal peak regions of the
most concentrated system. System parameters are: Z = 100, L B = 5.62 nm,
σ = 200 nm, zero added salt.

underestimates the MC-S(qm) for the largest concentration
only.

The MPB-RMSA and PB-RMSA schemes are in very
good overall agreement with the MC results, except for a
kink in g(r ) at the rescaled diameter which is most notice-
able at low concentrations, and except for a slight underes-
timation of the principal peak value g(rm) at larger φ. The
MPB-RMSA and the PB-RMSA coincide for low φ but, as a
general rule, the MPB-RMSA performs better at larger vol-
ume fractions. For this reason, in the following figures we
only include the results from the modified MPB-RMSA. At
φ = 0.105, the MPB-RMSA happens to predict a principal
peak height, S(qm), in even better agreement with the simula-
tion data than the RY scheme.

The discussed characteristics of the considered inte-
gral equation schemes persist when the concentration, ns , of
added 1-1 electrolyte is increased. This is demonstrated
in Figs. 3 and 4 for a concentrated (φ = 0.15) and dilute
(φ = 0.055) system, respectively. Consider first the system in

FIG. 3. Static structure factor, S(q), and radial distribution function,
g(r ), at various salt concentrations, ns , as indicated. Symbols represent
MC simulation data. System parameters as in Fig. 2, except now for a
higher volume fraction φ = 0.15 and nonzero concentrations of added 1-1
electrolyte.

Fig. 3 which is more concentrated than the most concentrated
one in Fig. 2, but approximately with the same peak height
S(qm) ≈ 2.5. This is due to the small amount, ns = 1 μmol/l,
of added salt which for the present system is large enough to
cause significant additional screening. According to Eq. (3),
the square of the screening parameter is the sum

k2 = k2
c + k2

s , (20)

of a contribution, k2
c , proportional to Z and arising from the

surface-released monovalent counterions, and a second con-
tribution, k2

s , due to added salt ions. The cross-over from
surface-counterion to salt-ion dominated screening occurs at
φ ∼ πnsσ

3/(3|Z |), or equivalently at

nc ∼ 2ns, (21)

where nc = n|Z | is the concentration of surface-released,
monovalent counterions. The cross-over volume fraction
at ns = 1 μmol/l is quite close to the considered system
volume fraction of φ = 0.15. The added-salt systems in
Figs. 3 and 4 exemplify our general observation that the
MPB-RMSA slightly overestimates the pair ordering at
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FIG. 4. Same as in Fig. 3 but for a small volume fraction of φ = 0.055.

intermediate salt concentrations, and this more so at lower
volume fractions. We have confirmed this by calculations
at various intermediate volume fractions for which the re-
sults are not shown here. At the largest salinity ns = 100
μmol/l considered in Figs. 3 and 4, both the RY and HNC
scheme predict a small but non-zero contact value, whereas
g(σ+) = 0 according to the MSA-based schemes. Except
for the narrow interval at r ≈ σ , the g(r )’s of all integral
equation schemes agree with each other in the high-salinity
case. The rdf in Fig. 4 for ns = 100 μmol/l has a visible
maximum g(rm) > 1 at the next-neighbor shell distance rm

≈ 1.2 × σ . This clearly distinguishes it from the infinite dilu-
tion limit, g0(r ) = exp{−βu(r )}, which exhibits no maximum
at finite r .

2. Comparison with experiment

The high accuracy of the MPB-RMSA for systems of
strongly correlated particles points to its capability as a
conveniently fast tool for evaluating scattering data. To il-
lustrate this, we use the MPB-RMSA in the following to
fit experimental S(q) which we have obtained from static
light scattering (SLS) experiments on suspensions of neg-
atively charged trimethoxysilylpropyl methacrylate (TPM)-

FIG. 5. Static structure factor, of S(q), of TPM-coated, charged silica
spheres dispersed in a toluene-ethanol mixture. Triangles are the static
light scattering data. Physical parameters used in the calculations are: L B

= 8.64 nm, σ = 272 nm and ns = 0.7 μmol/l. The charge numbers deter-
mined from fitting the experimental data, are identical for the MC, RY, and
MPB-RMSA methods, namely Z = (135, 190) for φ = (0.057, 0.15). The
nonmodified PB-RMSA predicts different values, namely Z = (145, 300).

coated silica spheres,70 dispersed in an index-matching
80:20 toluene-ethanol solvent mixture at T = 20o C and L B

= 8.64 nm.15 The organic solvent mixture allows for fine-
tuning of the salinity without having to worry about self-
dissociation of solvent molecules and uncontrolled CO2 ad-
sorption, problems encountered for in aqueous suspensions.
Moreover, the index matching minimizes the influence of
residual van der Waals attraction. The particle diameter de-
termined by small-angle x-ray scattering is σ = 272 nm, and
the relative size polydispersity is 0.06. For a residual salin-
ity smaller than 1μmol/l, the suspension freezes at φ ≈ 0.16
where the experimental S(q) attains a principal peak value of
about 3.2. The SLS experiments were conducted using a light
scattering set-up by the ALV-Laservertriebsgesellschaft (Lan-
gen, Germany), for a series of concentrations from φ = 0.057
to φ = 0.159. We carefully filtered the system and checked
that there is no noticeable multiple scattering. The scatter-
ing data are consequently quite reliable, and of little noise
even in the small wavenumber regime. The residual salinity
ns = 0.7μmol/l in the system was determined as a global fit-
parameter from a concentration series of SLS measurements
of S(q), fitted by the MC, RY, and MPB-RMSA calculations.
The only φ-dependent fitting parameter in our analysis has
been the effective charge number Z , which was adjusted in
each of the employed methods to match the experimental
S(qm).

Figure 5 exemplifies our theoretical analysis of the con-
centration series experiments by showing the peak-height ad-
justed S(q) of the MC, RY, and (M)PB-RMSA methods, for
the least concentrated system (φ = 0.057) in the series, and
a concentrated system (φ = 0.15) close to the freezing tran-
sition. The fraction of surface-released counterions is large
enough even at φ = 0.057, with kc = 0.93 × ks , to guarantee
a small value for the osmotic compressibility. All three meth-
ods considered in Fig. 5 reproduce the experimental S(q) with
excellent accuracy in the whole experimentally accessible
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FIG. 6. Effective charge number Z used in various schemes for a best ap-
proximation of the SLS S(qm ) in the concentration series of charged silica
spheres in a toluene-ethanol mixture. Common parameters are : L B = 8.64
nm, σ = 272 nm, and ns = 0.7 μmol/l. Shaded circles: MC simulations. Di-
amonds: RY and MPB-RMSA results. Triangles: PB-RMSA. Squares: HNC
and RMSA. Filled symbols are used when the experimental S(qm ) could be
reproduced, and open symbols when it is underestimated for any Z . In the
latter case, the lowest Z is plotted which minimizes the peak-height underes-
timation.

q-range. In Fig. 6, the deduced effective charges are plotted
for the complete concentration series. Interestingly enough,
the MC, RY, and MPB-RMSA methods all give the same
values for the effective charges, with uncertainties compara-
ble to the symbol sizes. This highlights the capability of the
MPB-RMSA to deliver reliable results for the effective charge
with little numerical effort. In contrast, the (unmodified) PB-
RMSA version of Snook and Hayter overpredicts the values
of Z systematically, but not to such an extent as the HNC and
RMSA schemes which overestimate the effective charge of
the silica spheres roughly by a factor of two, giving practi-
cally coincidental values (see Fig. 6).

The RMSA and HNC peak values of S(q) for φ > 0.06
could not be made large enough to reach the experimental
peak heights, for any reasonable value of Z . For the most
concentrated system (φ = 0.159) right at the freezing point,
even the PB-RMSA calculated S(qm) remains well below
the experimental S(qm), for any value of Z . This inability
of the RMSA and HNC schemes to reach the experimental
peak heights in certain low-salinity systems, like the consid-
ered silica samples, can be explained by the competing in-
fluence of added salt ions and surface-released counterions
[see Eq. (20)]: when Z is increased from small values at a
given φ, S(qm) increases initially since γ increases with Z
for nearly constant k, as long as nc � ns . When Z becomes
large, however, the cross-over point described by Eq. (21) is
surpassed, and the surface-released counterions start to dom-
inate the electrostatic screening. Then, S(qm) decreases with
increasing Z since the effect of the increasing coupling pa-
rameter γ on the pair structure is overcompensated by the
also increasing screening parameter k. Consequently, S(qm)
goes through a maximum as a function of Z . When S(qm) is
calculated by a method such as the RMSA which underesti-
mates the structure of strongly correlated particles, the pre-

dicted maximum of S(qm) as function of Z may be not large
enough to reach the experimental peak value.

In summarizing our discussion of systems with strong
Yukawa repulsion, we conclude that out of all considered
methods only the RY and MPB-RMSA schemes, and of
course the MC simulation method, allow for a fully consis-
tent fit of experimental structure factors, providing trustwor-
thy values for the effective charge.

Out of these three schemes, only the RY and MC methods
have been well-established so far, routinely used to fit scatter-
ing data. However, the fitting procedure can be quite cumber-
some due to the non-analytic nature of these two methods,
causing thus long execution times. On a standard desktop PC,
one MC run of good statistics typically takes several hours,
and about 10 seconds are usually needed for the RY calculated
pair structure functions of a given system. An additional com-
plication in applying the RY scheme is caused by its internal
iterative algorithm which interpolates between HNC and the
Percus-Yevick closure to achieve local thermodynamic con-
sistency. Convergence of this algorithm depends on an initial
seed for the mixing parameter which has to be provided by
the user. In our experience, it is occasionally difficult to find
an appropriate seed that allows the RY-scheme to converge.

The MPB-RMSA code, on the other hand, is rapidly eval-
uated for any system, with a typical cpu-time of less than
0.1 seconds. This has allowed us to implement the MPB-
RMSA with a convenient graphical user interface in which
an imported S(q) or g(r ) can be readily fitted. Input param-
eters such as Z and φ can be tuned with real-time response
of the MPB-RMSA structure functions, resulting in a fast and
versatile fitting tool of quantitative accuracy.

B. Systems with nonzero contact values

Complementary to the strong Yukawa coupling regime in
the HSY model where g(σ+) ≈ 0, there is the regime of weak
Yukawa repulsion characterized by non-zero contact values.
For weak Yukawa coupling is γ e−k � 1, which for the DLVO
parameters in Eqs. (2) and (3) holds true for a sufficiently
low Z and sufficiently large salt content. Even for a nonzero
probability of two macroions in contact, where g(σ+) > 0, in
many cases there is still a principal maximum g(rm) > g(σ+)
at rm/σ > 1 caused by the Yukawa tail. This clearly distin-
guishes these systems from neutral hard-sphere suspensions
where γ = 0 or k = ∞ (see Fig. 8 for an example). HSY sys-
tems with nonzero contact values are difficult to realize ex-
perimentally, since for colloids, e.g., one needs to worry about
residual van der Waals forces which become strong at contact.
Irrespective of any experimental realization, it is of interest
to test the performance of the (M)PB-MSA under conditions
where no rescaling is required. We do this in the following by
comparison with MC simulations and RY calculations.

We start by investigating the contact value of the rdf
which, in the weak coupling regime, is an indicator for the
accuracy of an integral equation scheme. In Fig. 7, we present
results for g(σ+) by the various integral equation schemes in
comparison with MC data. The system parameters are rep-
resentative of a low-salinity, aqueous solution of nano-sized
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FIG. 7. Contact value of g(r ) obtained by MC simulation (diamonds), RY
(circles), HNC (crosses), MSA (dotted lines), PB-(R)MSA (dashed lines),
and MPB-(R)MSA (solid lines). Black (top): Z = 1, red (middle): Z = 20.5,
blue (bottom): Z = 36. Dashed-dotted black line: Carnahan-Starling contact
value for hard spheres. Common parameters: L B = 0.71 nm, σ = 13.8 nm,
ns = 10 μmol/l.

apoferritin proteins.18 Three different effective charge num-
bers, Z = 36, 20.5 and 1, are considered.

For Z = 1, the limit of neutral hard spheres (HS)
is reached practically, with tiny differences to the hard-
sphere contact value only. For hard spheres, gHS(σ+)
= (1 − 0.5φ)/(1 − φ)3 as derived from the Carnahan-Starling
equation of state.3 In the limit of zero Yukawa coupling
(Z = 0), the (M)PB-MSA and the MSA reduce to the Percus-
Yevick solution for hard spheres, which is known to underesti-
mate the exact gHS(σ+) at larger volume fractions (φ � 0.35).
On the other hand, the RY predictions for g(r ) including the
contact values are in excellent accord with the MC simulation
results, for all considered values of Z (see Fig. 8). The HNC
is known to deteriorate in its performance when systems with
shorter-range repulsive potentials are considered, predicting
a too pronounced next neighbor shell and a too large contact
value of the rdf.

1 1.5 2 2.5
r/σ

0

1

2

3

g(r)

MC
RY
HNC
MSA
PB-(R)MSA
MPB-(R)MSA

=36,
=0.45

Z
φ

=20.5,
=0.153

Z
φ

FIG. 8. Radial distribution function for two systems selected from
Fig. 7. Common parameters: L B = 0.71 nm, σ = 13.8 nm, ns

= 10 μmol/l. Charge numbers and volume fractions as indicated.

The supremacy of the (M)PB-MSA schemes over the
MSA in the no-rescaling regime of positive contact values
shows up more clearly when the charge number is increased
so that the electrostatic and excluded volume interactions are
of comparable importance. An analysis of a large number
of systems with finite contact values at various charge num-
bers, hard-core diameters, and electrolyte concentrations has
revealed that all three MSA-based schemes tend to overesti-
mate the increase of g(σ+) with increasing φ as obtained by
the MC and RY methods, whenever γ e−k � 3.0. Among the
MSA-based schemes, the weakest overestimation is observed
for the MPB-RMSA method. See here for example the sys-
tem with Z = 36 in Fig. 7. Consider next the g(r ) of a dense
system at φ = 0.45 and Z = 36 depicted in Fig. 8. For this
system, g(σ+) = 2.01, 2.48 and 2.64 in MC, MPB-MSA, and
PB-MSA, respectively. While the MPB-MSA performs better
than the PB-MSA regarding the contact value, the primary
Yukawa-tail peak of g(r ) at rm > σ is slightly more underes-
timated by the modified PB-MSA version. A general obser-
vation for systems with weak Yukawa coupling is that, while
contact values and Yukawa-tail induced peak values are not
precisely reproduced, the overall shape of the (M)PB-MSA
g(r ) is still in good accord with the MC and RY results.

C. Test of thermodynamic consistency

Out of all integral schemes considered in this work,
the RY scheme is the only one which is thermodynami-
cally self-consistent regarding the (osmotic) compressibility.
By construction, the zero-q limiting value of the inverse RY
static structure factor agrees with the concentration derivative,
β (∂pv/∂n)T , of the virial pressure in Eq. (19). In taking the
derivative, a possible concentration dependence of u(r ) and
of the mixing parameter has been ignored (see discussion in
Sec. II D).

We can use the RY results for S(0) as accurate reference
values to quantify the degree of thermodynamic inconsistency
for each of the other considered integral equation schemes, by
comparing the results for S(0) with those for kB T (∂n/∂pv )T ,
the latter obtained by a numerical differentiation of the virial
pressure pv as in the RY case.

In a HSY system with strong and long-range Yukawa re-
pulsion, S(0) attains values close to zero. Therefore, to clearly
see differences, in Fig. 9 we plot the predictions for 1/S(0)
(solid lines) by the various integral equation schemes along
with the corresponding results for β (∂pv/∂n)T (dashed lines).
The system parameters of L B = 8.64 nm, σ = 200 nm, ns

= 1 μmol/l, and Z = 200 are representative of a low-salinity
system of strongly repelling macroions. The volume fraction
interval covers the complete fluid-phase regime up to φ

= 0.15, with a peak height S(qm) ≈ 3.1 where, according to
the empirical Hansen-Verlet freezing rule, systems with long-
range Yukawa repulsion are close to the freezing point.36, 71, 72

In Fig. 9, it can be noted that all considered inte-
gral equation schemes except the RY are thermodynamically
inconsistent, with the relative difference between compress-
ibility and virial results extending up to 53% for the HNC,
45% for the RMSA, 34% for the PB-RMSA and 24% for
the MPB-RMSA. The self-consistent RY result for the inverse
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FIG. 9. Test of local thermodynamic consistency. Solid lines with filled
symbols: 1/S(0) as a function of φ, for different integral equation
schemes as indicated. Dashed lines with open symbols: corresponding
predictions for β (∂pv/∂n)T , obtained from the concentration derivative
of the virial pressure in Eq. (19). System parameters: L B = 8.64 nm,
σ = 200 nm, ns = 1 μmol/l, Z = 200.

reduced compressibility is bracketed by the HNC, RMSA and
PB-RMSA solutions, but not by the MPB-RMSA results. The
predictions for 1/S(0) by the various schemes grow roughly
linear in concentration for all φ > 0.025, where the lower
bound is the concentration value for which ks = kc.

Figure 9 shows that, as a consequence of the improve-
ment of the RMSA-predicted pair structure by the modified
PB correction, also the degree of thermodynamic consistency
is improved. Unlike HNC and RMSA, the MPB-RMSA re-
sult for S(0) is in reasonably good accord with the RY result
even up to the freezing concentration. Thus, the MPB-RMSA
can be used to obtain a quick estimate of the (osmotic) com-
pressibility. However, if quantitative accuracy is required, the
RY-method is the method of choice.

IV. CONCENTRATION SCALING AND FLUID-PHASE
BEHAVIOR

Having established the good accuracy of the MPB-
RMSA in comparison to MC and RY calculations, we demon-
strate now its capability as a fast tool to explore generic fea-
tures in the pair structure and fluid-phase behavior of HSY
systems. The explorations discussed below have required ex-
tensive parameter scans. We focus in the following again
on systems with strong Yukawa repulsion characterized by
g(σ+) ≈ 0.

As a first application of the MPB-RMSA, in Fig. 10 we
investigate the generic concentration dependence of the prin-
cipal peak positions rm and qm of g(r ) and S(q), respectively,
for suspensions of strongly charged colloidal macroions. For
these systems, one expects that the particles minimize their
configurational free energy by maximizing the radius of the
next-neighbor shells. Thus, rm should scale geometrically in
concentration according to rm ∼ d̃ = n−1/3, and qm according
to qm ∼ 2π/d̃ .

FIG. 10. (a) Radial position, rm , of the principal maximum in g(r ), and
(b) wavenumber location, qm , of the principal maximum in S(q), plot-
ted versus the inverse geometric pair distance 1/d̃ = n1/3 in units of σ .
Results for various salt contents (as indicated) were generated using the
MPB-RMSA. Abscissa values where ks = kc are marked by vertical lines.
Parameters L B = 0.716 nm, σ = 100 nm, and Z = 300 are representative of
an aqueous suspension of strongly charged macroions.

Figure 10 demonstrates that the scaling relations rm = d̃,
and qm = 1.1 × 2π/d̃ , are obeyed to good accuracy, provided
the salt concentration ns is not too large and the volume frac-
tion is not too low. In the experimentally not realizable case
of zero salinity (ns = 0), the geometric scaling of the peak
positions with the colloid concentration remains valid down
to very low values of n. With increasing salt content, the con-
centration of salt ions eventually surpasses the concentration
of surface-released counterions, leading to a significant re-
duction in the reduced Debye screening length, 1/k, and the
pair potential contact value at r = σ . This softens the Yukawa
tail, allowing two particles to come closer than n−1/3, indi-
cated in Fig. (10) by deviations of rm and qm from the n±1/3

scaling behavior. As a crude criterion for the transition to ge-
ometric concentration scaling behavior, we can use kc > ks ,
or equivalently, n > 2ns/|Z |, where kc according to Eq. (20)
is the contribution to k due to the monovalent counterions
released from the colloid surfaces. This simple criterion
is qualitatively confirmed in Fig. 10 where the colloid
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FIG. 11. (a) Reduced radial distribution function gred(R), and (b) reduced
static structure factor Sred(Q), for a large number of systems with φ = 0.01,
gMPB-RMSA(σ+) = 0 and S(qm ) ≤ 3.2. Systems in (a) satisfy additionally
that 0.99 ≤ rm/d̃ ≤ 1.01, and in (b) that 0.99 ≤ qmd̃/(2.2π ) ≤ 1.01.

concentrations where n = 2ns/|Z | are marked by short ver-
tical lines. Note that the geometric scaling of rm necessarily
fails at very high concentrations where d̃ approaches σ .

For systems where rm and qm obey geometric concentra-
tion scaling, one might anticipate that the reduced pair struc-
ture functions

gred(R) = g(r/rm) − 1

g(rm) − 1
, (22)

Sred(Q) = S(q/qm) − 1

S(qm) − 1
, (23)

with R = r/rm and Q = q/qm , are approximately univer-
sal except for small values of their arguments. By defini-
tion, gred(R) and Sred(Q) are equal to one at R = Q = 1
and converge to zero for both R, Q → ∞. The function
Sred(Q) is nonuniversal at Q ≈ 0, since even for the subclass
of low-compressibility systems where S(0) ≈ 0 and Sred(0)
≈ −1/(S(qm) − 1), different values for Sred(0) are obtained
for different principal peak heights. By the same token,
gred(R) behaves nonuniversal at R ≈ 0.

In Fig. 11, MPB-RMSA results for gred(R) and Sred(Q)
are displayed for a large number of fluid-ordered HSY sys-
tems with S(qm) ≤ 3.2, masked hard-core interactions, and
geometric concentration scaling of rm and qm , respectively.
There are pronounced variations in the width of the principal
peaks and in the undulations of the following minimum and
maximum. The sharpest peaks are found for the most strongly
structured, low-compressibility systems. These systems show
additionally the largest values of gred(0) and Sred(0). The

figure clearly illustrates that the reduced structure functions
are non-universal even away from the small argument regime.

According to Eq. (7), a universal gred(R) for systems
where rm = d̃ would imply a linear relationship between
S(qm) − 1 and g(rm) − 1. This would allow the rephrasing
of the Hansen-Verlet freezing criterion for S(qm) in terms of
g(rm). However, such a simple 1-1 relation between S(qm) and
g(rm) does not exist in general. This will be explicitly demon-
strated as a by-product of the following discussion.

Up to this point, parameters including φ, nsσ
3 and L B/σ

have been varied which are to a certain extent under experi-
mental control. However, as noted in the introduction, strong
Yukawa systems for which g(σ+) ≈ 0 are fully characterized
by two independent coupling parameters, namely γ̃ and k̃ ap-
pearing in Eq. (4).

In discussions of the phase behavior, it is more conve-
nient to use the pair (T̃ , k̃) in place of (γ̃ , k̃), with the reduced
temperature

T̃ = kB T

u(d̃)
= exp(k̃)

γ̃
, (24)

measuring the thermal energy relative to the potential energy
of a pair of particles at distance d̃ = n−1/3. A given state point
(T̃ , k̃) corresponds to a unique g(r ) and S(q), for r and q ex-
pressed in units of d̃ . Different sets, {σ, L B/σ, Z , nsσ

3, φ}, of
experimentally controllable parameters can describe the same
state point (T̃ , k̃).

HSY systems with non-negligible finite contact values
g(σ+) > 0 require three independent parameters to span the
phase space. A convenient choice is (T̃ , k̃, φ). Systems of
equal (T̃ , k̃, φ) have the same S(q) and g(r ) in common, with
q and r expressed in units of σ .

We proceed by discussing the fluid-phase diagram part
of HSY systems with masked hard-core interactions, charac-
terized by the two parameters T̃ and k̃. The diagram is con-
structed using the MPB-RMSA predictions for S(qm) in com-
bination with the empirical Hansen-Verlet rule. For a neutral
hard-sphere system with no long-ranged, soft Yukawa repul-
sion, the Hansen-Verlet rule states that S(qm) = 2.85 at freez-
ing. Computer simulations36, 71, 72 and density functional the-
ory calculations73 have shown that S(qm) at freezing varies
between 2.85 and 3.3 for HSY systems, depending on the
range of the Yukawa tail. In the present study, a fixed value of
3.2 was selected for simplicity, in agreement with the freezing
peak value of S(q) found experimentally in our low-salinity
charged silica system.

Figure 12 shows our result for the T̃ − k̃ phase dia-
gram for a very extended range, T̃ = 10−3 − 1010 and k̃
= 10−4 − 50, of state points. Fluid-phase systems are char-
acterized by peak values S(qm) < 3.2. The inset shows the
lower-k̃ part of the diagram on a linear scale. A uniformly
colored areal segment in the diagram includes the state points
of fluid systems of equal volume fraction. Seven different
volume fractions φ from 0.01 to 0.45 are considered. An
areal segment of given φ is bounded from above by the line
determined from gMPB-RMSA(σ+; φ) = 0, and from below by
the freezing line S(qm) = 3.2 common to all segments. Thus,
for instance the green area describing the φ = 0.01 systems
extends all the way down to the freezing line separating the
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FIG. 12. Fluid-phase diagram, obtained using the MPB-RMSA, for HSY
systems with gMPB-RMSA(σ+) = 0, fully characterized by the reduced tem-
perature T̃ and screening parameter k̃. The fluid phase is characterized us-
ing the Hansen-Verlet criterion S(qm ) < 3.2. A specifically colored areal
facet corresponds to a specific volume fraction, namely (from top to bot-
tom) green: φ = 1%, violet: φ = 5%, blue: φ = 10%, orange: φ = 15%,
light blue: φ = 25%, black: φ = 35%, and red: φ = 45%. A facet of given φ

is bounded from above by the visible curve determined from g(σ+, φ) = 0,
and from below by the freezing line S(qm ) = 3.2 common to all facets.
Inset: lower-k̃ phase diagram part using a linear scale. The dotted curve
is the solid-liquid coexistence line for point Yukawa particles according to
Refs. 72 and 74.

solid from the fluid. However, it is overlayed in the figure by
the differently colored areas of higher volume fractions. In-
creasing the temperature T̃ in systems of given φ and k̃ in-
creases the likelihood of near-contact configurations, until the
upper boundary of the fixed-φ segment is reached defined by
the largest T̃ where gMPB-RMSA(σ+) = 0. On further increas-
ing the temperature, g(σ+) > 0 and the systems of a given φ

no longer belong to the considered class of HSY systems with
masked hard-core interactions. As expected and noted from
the phase diagram, the region of fluid-state points describing
systems with masked hard-core interactions narrows with de-
creasing screening length and increasing volume fraction.

According to the inset in Fig. 12, the solid-fluid coexis-
tence line bounding the fluid-state diagram from below, is in
good accord with the polynomial fit to the melting line,72

T̃m(k̃) = 0.009 + 0.0303 k̃ − 0.00997 k̃2

+ 0.0035 k̃3 − 0.000245 k̃4, (25)

reported by Bitzer et al.74 The Hansen-Verlet criterion does
not allow to distinguish the fluid-bcc transition appearing
at smaller screening parameters from the fluid-fcc transition
at larger k̃. However, the value of the reduced temperature
at the isochoric fluid-bcc transition point in the OCP limit,
is predicted by the MPB-RMSA method as T̃ (k̃ = 0) ≈ 0.01.
This value is in agreement with Eq. (25), and with the molec-
ular dynamics simulation result by Hamaguchi et al.38 This
points to the internal consistency and accuracy of the fluid-
phase diagram in Fig. 12. Note here that the fluid-solid co-
existence region of the HSY at smaller values of k̃ is very
narrow, with vanishing relative density difference (vanishing
miscibility gap) at k̃ = 0.35, 38, 73

A short discussion is in order here regarding the number
of considered state points on which Fig. 12 is based. For each
of the seven considered volume fractions, the MPB-RMSA
pair structure functions have been calculated and stored in
a database for 500 × 500 state points (T̃ , k̃), of values dis-
tributed over the depicted T̃ and k̃ intervals. Such an extensive
calculation was done in about 5 h of cpu time on a standard
desktop PC. It was made possible owing to the rapidity and
stability of the MPB-RMSA code. Out of this large number,
systems with S(qm) < 3.2 and gMPB-RMSA(σ+) = 0 were se-
lected constituting the state points in Fig. 12. An additional
filtering for systems obeying geometric concentration scaling
has led to Fig. 11.

In Fig. 13, we have sorted the zero-contact-value systems
in Fig. 12 according to values of the principal peak positions
and locations, and the location, rdip, of the first minimum in
g(r ) to the right of the principal peak [see inset in Fig. 13(c)].
Each colored dot in the figure represents a system where the
MPB-RMSA structure functions have been calculated. The
subset of systems of lowest φ = 0.01 (green dots), e.g., ex-
tends actually over the whole dotted phase space part. How-
ever, like in Fig. 12, it is partially overlayed [in Fig. 13(a)
nearly completely] by the more concentrated subsets of sys-
tems colored like in Fig. 12.

Figure 13(a) shows explicitly that for a given value of
S(qm), there exist a variety of systems of different peak values
g(rm) and different volume fractions. As we have discussed in
relation to Fig. 11 and the Hansen-Verlet criterion for S(qm),
there is no unique value of g(rm) characterizing the onset of
freezing. For instance, for S(qm) = 3.2, values for g(rm) occur
in between 2.2 and 3.8.

Figure 13(b) extends the discussion of Fig. 10 by show-
ing that, with increasing φ, all systems approach geometric
scaling behavior where rm/d̃ = 1 and qmd̃/(2π ) = 1.1. The
most concentrated systems at φ = 0.45 (in red) cover only a
tiny patch centered at this geometric scaling point.

In Fig. 13(c), all fluid systems are sorted according to the
locations, rm and rdip, of the principal peak and the subsequent
minimum of g(r ). There is very roughly a linear relationship
between rdip and rm (with some significant spread, however)
independent of the considered volume fraction. Quite inter-
estingly, the systems obeying geometric concentration scaling
are located, for any considered φ, in a small patch centered at
rdip/d̃ = 1.4 and rm/d̃ = 1, with constant ratio rdip/rm ≈ 1.4
(as long as the fluid systems are well structured).

This finding of a constant ratio for systems obeying ge-
ometrical density scaling can be motivated by the following
simplifying consideration. The rdf of a strongly correlated
HSY system with well-developed principal peak is crudely
described by

g(r ) ≈ 
(r − rm) + A

4π n r2
m

δ(r − rm), (26)

where 
(r ) is the unit step function. The δ-distribution part is
a crude sketch of the peak region of g(r ). On noting that

Nnn = 4πn
∫ rdip

0
dr r2 g(r ) (27)
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FIG. 13. (a) S(qm ) vs g(rm ), and (b) qm/(2π ) vs rm/d̃, and (c) rdip vs rm , for
the zero-contact value fluid systems at the seven volume fractions considered
in Fig. 12, using the same color code. All lengths are in units of d̃. Each
colored dot represents a considered system. The inset in (c) illustrates the
locations of rm and rdip.

defines the number of next neighbors, and using rm = d̃, inte-
gration of Eq. (26) leads to

(
rdip

rm

)3

= 3

4π
(Nnn − A) + 1. (28)

Provided A and Nnn are independent of φ, a constant ratio
rdip/rm is obtained. In strongly correlated systems, S(0) ≈ 0,

which in conjunction with the Fourier transform of Eq. (26)
leads to A = 4π/3 − 1. Assuming Nnn = 12 consistent
with the values 12−13 obtained from Eq. (27) when the
MPB-RMSA rdf’s are used, rdip/rm ≈ 1.38 is obtained which
somewhat fortuitously is close to the ratio 1.4 noted from
Fig. 13(c).

V. CONCLUSIONS

We have presented a comprehensive study of the static
pair structure in liquids of particles with hard-sphere plus
repulsive Yukawa pair interactions. The study comprises re-
sults from various integral equation schemes and MC simula-
tions, and static light scattering results obtained from a well-
characterized system of charged silica spheres.

An analytic integral equation method has been described
which allows for a fast and quantitatively accurate computa-
tion of S(q) and g(r ). The MPB-RMSA method is a slight
modification of the PB-RMSA scheme originally devised by
Snook and Hayter. It can be easily implemented into a stan-
dard (R)MSA code (cf., the Appendix), making it appealing
for practical applications.

Through extensive comparison with RY and MC calcu-
lations, we have established the MPB-RMSA as a fast and
convenient tool for analyzing experimental scattering data on
charge-stabilized suspensions in a wide range of concentra-
tions, ionic strengths, and effective charge numbers, with a
fast delivery of S(q) and g(r ). Such a fast delivery is also
required in dynamic methods including the mode-coupling
theory (MCT) and dynamic density functional theory, where
numerous static structure factors in an extended range of
wavenumbers are used as input in calculations of nonequi-
librium boundaries such as the glass line.

The MPB-RMSA is well suited for the real-time fitting
of experimentally obtained pair structure functions. The
central fitting parameter, Z , can be obtained from matching
the experimental structure factor peak heights. In most cases,
the so-obtained MPB-RMSA effective charge number is
practically identical to those obtained from the more elabo-
rate MC simulation and RY methods. The latter two methods
are computationally more expensive by orders of magnitude.
For the charged silica spheres system studied experimentally,
the effective charge predictions by the unmodified PB-RMSA
scheme were found to be less accurate than the MPB-RMSA
predictions.

We have demonstrated the capability of the MPB-RMSA
as a fast tool for exploring generic features in the pair mi-
crostructure and the fluid phase behavior. Using the MPB-
RMSA, the principal peak heights, S(qm) and g(rm), and the
corresponding peak positions have been determined through-
out the fluid-state (T̃ , k̃) phase regime. This has allowed us
to explore the conditions for which geometric concentration
scaling of the peak positions is observed. The solid-fluid coex-
istence line determined in conjunction with the Hansen-Verlet
freezing rule was shown to be in good agreement with MD
simulation results for point Yukawa particles, including the
OCP transition point.

While the MPB-RMSA static structure functions are in
good overall agreement with the MC and RY results, in
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some details there are smaller deviations. For low-salt sys-
tems of strongly correlated particles, S(qm) can be over-
estimated by up to 5%. Regarding the radial distribution
function, the peak value, g(rm), is in general slightly un-
derestimated, again by up to 5% for highly correlated par-
ticles. Furthermore, the (M)PB-RMSA g(r ) has a kink at
the inflated (rescaled) hard core diameter not shared by the
exact rdf. For HSY systems with weak Yukawa repulsion
where the physical hard core matters, the MPB-MSA pair
structure functions are also in good overall agreement with
the MC and RY data, unless γ e−k � 3.0. Under the lat-
ter condition, the increase of g(σ+) as a function of φ is
overestimated.

Unlike the RY scheme, the MPB-RMSA is thermody-
namically inconsistent, but to a lesser degree than the RMSA,
HNC and also the PB-RMSA schemes. The zero-q limit of
S(q) is predicted by the MPB-RMSA to reasonable accuracy,
with deviations from the RY result of less than 10% even up
to the freezing volume fraction.

Finally, we note that MPB-RMSA calculated pair struc-
ture functions have been used very recently as input in calcu-
lations of short-time diffusion properties of charge-stabilized
colloidal spheres,15, 16 and in idealized MCT calculations of
the colloidal glass transition.75
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APPENDIX: MPB-RMSA ALGORITHM

Here, we describe the algorithm of our MPB-RMSA code
based on the analytic MSA solution for S(q), c(r ), and the
contact value g(σ+) of the HSY model as given in Refs. 43
and 44.

� Step 1:
Specify input parameters [σ,γ,k,φ]
of the considered repulsive HSY
system. For charged colloids one may
use Eqs. (2) and (3) for γ and k.
Select tolerance 1 �TOL> 0 in Gillan
criterion |g(x ′ = 1+)| <TOL.

� Step 2:
Calculate γ ∗ = γ (1 − φ)−2, kmod = (1 − φ)k.

� Step 3:
Determine gMSA(x = 1+), with x = r/σ,
using parameters [σ,γ ∗,kmod,φ].
If gMSA(x = 1+) < 0, select s from (0, 1)
and continue with step 4.
Otherwise assign σ ∗ = σ, k∗ = kmod,
φ∗ = φ, then go to step 6

� Step 4:
Assign x ′ = xs, and:
σ ∗ = σ ′ = σ s−1,
φ∗ = φ′ = φs−3,
γ ∗ = γ ′(1 − φ′)−2 = γ s(1 − φ′)−2,
k ′ = kmods−1,
k∗ = k ′ − 2φ′1/3 log(1 − φ′).

� Step 5:
Determine gMSA(x ′ = 1+) for input
parameters [σ ∗,γ ∗,k∗,φ∗].
If |gMSA(x ′ = 1+)| <TOL, go to step 6.
Otherwise select s from (0, 1) and go
to step 4.
The new selection for s is made by
a Newton-Raphson type algorithm, on
accounting for previously obtained
MSA contact values.

� Step 6:
Calculate SMSA(q) in given range
0 ≤ q ≤ qmax using input parameters
[σ ∗,γ ∗,k∗,φ∗], i.e. SMPB-RMSA(q) =
SMSA(q; σ ∗, γ ∗, k∗, φ∗). The rdf fol-
lows numerically by a fast Fourier
transform.

If step 2 is replaced by γ ∗ = γ (1 − φ)−2 and kmod = k,
the original PB-RMSA scheme by Snook and Hayter52 is re-
covered. To obtain the rdf in MPB-RMSA, do not use Eq. (7)
since the integrand decays slowly in q, making the integral
quite sensitive to the cutoff wavenumber qmax . Instead, we
use

g(r ) = 1 + c(r ) + 1

2π2 r

∫ ∞

0
dq q sin(qr )

(S(q) − 1)2

S(q)
,

(A1)

which includes a faster decaying integrand. On the right-
hand side of Eq. (A1), S(q) = SMPB-RMSA(q) and c(r > σ ∗)
= −βu∗(r ), where u∗(r ) = u(r ; σ ∗, γ ∗, k∗, φ∗) and σ ∗ is the
MPB-RMSA rescaled diameter. The MPB-RMSA code with
TOL= 10−4 requires in general less than 10 iterations to de-
termine the rescaling parameter s. The execution time on a
standard PC is less than 0.1 seconds, for S(q) and g(r ) deter-
mined on a grid with 104 points.
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