000141289 001__ 141289
000141289 005__ 20210129212912.0
000141289 0247_ $$2doi$$a10.1007/s11051-013-1981-y
000141289 0247_ $$2ISSN$$a1572-896X
000141289 0247_ $$2ISSN$$a1388-0764
000141289 0247_ $$2WOS$$aWOS:000325255600001
000141289 037__ $$aFZJ-2013-06483
000141289 041__ $$aEnglish
000141289 082__ $$a570
000141289 1001_ $$0P:(DE-HGF)0$$aLepadatu, Ana-Maria$$b0
000141289 245__ $$aDense Ge nanocrystal layers embedded in oxide obtained by controlling the diffusion–crystallization process
000141289 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2013
000141289 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1387531427_30246
000141289 3367_ $$2DataCite$$aOutput Types/Journal article
000141289 3367_ $$00$$2EndNote$$aJournal Article
000141289 3367_ $$2BibTeX$$aARTICLE
000141289 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000141289 3367_ $$2DRIVER$$aarticle
000141289 500__ $$3POF3_Assignment on 2016-02-29
000141289 520__ $$aAmorphous Ge/SiO2 multilayer structures deposited by magnetron sputtering have been annealed at different temperatures between 650 and 800 C for obtaining Ge nanocrystals in oxide matrix. The properties of the annealed structures were investigated by transmission electron microscopy, Raman spectroscopy, and low temperature photoluminescence. The Ge crystallization is partially achieved at 650 C and increases with annealing temperature. Insight of the Ge nanocrystal formation was acquired by comparing two annealing procedures, i.e., in a conventional tube furnace and by a rapid thermal annealing. By rapid thermal annealing in comparison to conventional furnace one, the Ge crystallization process is faster than Ge diffusion, resulting in the formation of more compact layers of Ge nanocrystals with 8–9.5-nm size as Raman spectroscopy reveals. These findings are important to improve the annealing efficiency in the nanocrystals formation for a precise control of their sizes and location in oxide matrix and for the possibility to create systems with interacting nanoparticles for charge or excitonic transfer. The infrared photoluminescence of Ge nanocrystals at low temperatures shows strong emission with two sharp peaks at about 1,000 meV.
000141289 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000141289 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000141289 7001_ $$0P:(DE-Juel1)128637$$aStoica, Toma$$b1$$ufzj
000141289 7001_ $$0P:(DE-HGF)0$$aStavarache, Ionel$$b2
000141289 7001_ $$0P:(DE-HGF)0$$aTeodorescu, Valentin Serban$$b3
000141289 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b4$$ufzj
000141289 7001_ $$0P:(DE-HGF)0$$aCiurea, Magdalena Lidia$$b5$$eCorresponding author
000141289 773__ $$0PERI:(DE-600)2017013-0$$a10.1007/s11051-013-1981-y$$gVol. 15, no. 10, p. 1981$$n10$$p1981$$tJournal of nanoparticle research$$v15$$x1572-896X$$y2013
000141289 8564_ $$uhttps://juser.fz-juelich.de/record/141289/files/FZJ-2013-06483.pdf$$yRestricted
000141289 909CO $$ooai:juser.fz-juelich.de:141289$$pVDB
000141289 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128637$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000141289 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000141289 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000141289 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000141289 9141_ $$y2013
000141289 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000141289 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000141289 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000141289 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000141289 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000141289 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000141289 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000141289 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000141289 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000141289 920__ $$lyes
000141289 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000141289 980__ $$ajournal
000141289 980__ $$aVDB
000141289 980__ $$aUNRESTRICTED
000141289 980__ $$aI:(DE-Juel1)PGI-9-20110106