Home > Publications database > Dense Ge nanocrystal layers embedded in oxide obtained by controlling the diffusion–crystallization process > print |
001 | 141289 | ||
005 | 20210129212912.0 | ||
024 | 7 | _ | |a 10.1007/s11051-013-1981-y |2 doi |
024 | 7 | _ | |a 1572-896X |2 ISSN |
024 | 7 | _ | |a 1388-0764 |2 ISSN |
024 | 7 | _ | |a WOS:000325255600001 |2 WOS |
037 | _ | _ | |a FZJ-2013-06483 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Lepadatu, Ana-Maria |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Dense Ge nanocrystal layers embedded in oxide obtained by controlling the diffusion–crystallization process |
260 | _ | _ | |a Dordrecht [u.a.] |c 2013 |b Springer Science + Business Media B.V |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1387531427_30246 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
520 | _ | _ | |a Amorphous Ge/SiO2 multilayer structures deposited by magnetron sputtering have been annealed at different temperatures between 650 and 800 C for obtaining Ge nanocrystals in oxide matrix. The properties of the annealed structures were investigated by transmission electron microscopy, Raman spectroscopy, and low temperature photoluminescence. The Ge crystallization is partially achieved at 650 C and increases with annealing temperature. Insight of the Ge nanocrystal formation was acquired by comparing two annealing procedures, i.e., in a conventional tube furnace and by a rapid thermal annealing. By rapid thermal annealing in comparison to conventional furnace one, the Ge crystallization process is faster than Ge diffusion, resulting in the formation of more compact layers of Ge nanocrystals with 8–9.5-nm size as Raman spectroscopy reveals. These findings are important to improve the annealing efficiency in the nanocrystals formation for a precise control of their sizes and location in oxide matrix and for the possibility to create systems with interacting nanoparticles for charge or excitonic transfer. The infrared photoluminescence of Ge nanocrystals at low temperatures shows strong emission with two sharp peaks at about 1,000 meV. |
536 | _ | _ | |a 421 - Frontiers of charge based Electronics (POF2-421) |0 G:(DE-HGF)POF2-421 |c POF2-421 |x 0 |f POF II |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Stoica, Toma |0 P:(DE-Juel1)128637 |b 1 |u fzj |
700 | 1 | _ | |a Stavarache, Ionel |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Teodorescu, Valentin Serban |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Buca, Dan |0 P:(DE-Juel1)125569 |b 4 |u fzj |
700 | 1 | _ | |a Ciurea, Magdalena Lidia |0 P:(DE-HGF)0 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1007/s11051-013-1981-y |g Vol. 15, no. 10, p. 1981 |p 1981 |n 10 |0 PERI:(DE-600)2017013-0 |t Journal of nanoparticle research |v 15 |y 2013 |x 1572-896X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/141289/files/FZJ-2013-06483.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:141289 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)128637 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)125569 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-529H |2 G:(DE-HGF)POF3-500 |v Addenda |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-420 |0 G:(DE-HGF)POF2-421 |2 G:(DE-HGF)POF2-400 |v Frontiers of charge based Electronics |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Grundlagen zukünftiger Informationstechnologien |
914 | 1 | _ | |y 2013 |
915 | _ | _ | |a Peer review unknown |0 StatID:(DE-HGF)0040 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|