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We consider an open isotropic Heisenberg quantum spin chain, coupled at the ends to boundary
reservoirs polarized in different directions, which sets up a twisting gradient across the chain. Using
a matrix product ansatz, we calculate the exact magnetization profiles and magnetization currents
in the nonequilibrium steady steady state of a chain with N sites. The magnetization profiles
are harmonic functions with a frequency proportional to the twisting angle θ. The currents of
the magnetization components lying in the twisting plane and in the orthogonal direction behave
qualitatively differently: In-plane steady state currents scale as 1/N2 for fixed and sufficiently large
boundary coupling, and vanish as the coupling increases, while the transversal current increases
with the coupling and saturates to 2θ/N .

PACS numbers: 03.65.Yz, 75.10.Pq, 02.30.Ik , 05.60.Gg

The Heisenberg quantum spin chain is a fundamental and one of the most well–studied quantum models of statistical
mechanics. However, not much is known about the Heisenberg chain in a nonequilibrium setting where the chain
is maintained in a strongly non-equilibrium state by e.g. a coupling to the ends to boundary reservoirs at different
chemical potential or different polarization. The boundary gradient drives a quantum system towards a nonequilibrium
steady state (NESS), typically characterized by various nonvanishing currents of energy, magnetization etc. The open
quantum system is canonically described by the celebrated quantum master equation for the reduced density matrix
in the Lindblad form (Lindblad Master Equation, or LME) [1, 2].
The full LME evolution of an open system of N spins is described by a 2N × 2N reduced density matrix ρ(t),

which has 22N − 1 independent real entries. It is clear that the usage of even most powerful numerical methods
is restricted due to exponentially growing complexity of the problem. However, many fundamental properties like
conductivity, universality classes and critical behaviour are the properties of thermodynamically large systems and
hence require the development of analytic non-perturbative methods. In spin chain materials like SrCuO2 many
transport characteristics are measurable experimentally [3, 4].
The purpose of the present paper is to investigate in detail the NESS of a simply formulated, and analytically

treatable, open quantum many-body system. Namely, we consider an open nonequilibrium isotropic Heisenberg spin
chain, coupled to boundary reservoirs, which tend to polarize spins at the edges along arbitrary directions ~nR, ~nL on
the right and on the left end, see Fig.1. Due to the bulk isotropy, the NESS depends on two scalar parameters: the
angle θ between the unit vectors ~nL, ~nR, cos θ = (~nL, ~nR), and the ratio between the boundary coupling strength and
bulk exchange interaction. Except for the case of an ideal alignment θ = 0, the boundary coupling induces twisting
gradient gradients and nonvanishing steady state currents.
During last few years, the open nonequilibrium Heisenberg spin chain with local dissipative action at the boundaries

has become a paradigmatic reference model in the field, due to its conceptual simplicity and recently discovered
powerful non-perturbative methods [5–7]. The NESS for the case with antiparallel alignment ~nL = (0, 0, 1), ~nR =
(0, 0,−1), so that θ = π was formulated as a matrix product ansatz (MPA) and solved for a more general XXZ
quantum model. Further generalizations of the basic model [7] were proposed, in which additional incoherent hopping
processes or bulk dephasing processes were included [8, 9].
The model with twisting boundary gradients was introduced and studied in [10, 11] in a slightly more general

setting with exchange Z−anisotropy, while twisting was applied in the perpendicular XY -plane. However, previous
studies were limited to small system sizes, and could not provide reliable information on scaling behaviour. Using
LME symmetries [10], one can at most make general qualitative predictions about the nature of the steady state and
admissibility of certain observables [13]. E.g., based on a particular odd-even size alternating symmetry argument,
the possibility of a ballistic magnetization current in XXZ-model with XY -twisting gradient at θ = π/2 was ruled
out [10].
In our recent study [6] it was shown that the isotropic XXX-model is exactly solvable by an MPA for any twisting

angle θ. Here we go further and compute analytically various steady-state observables for finite systems and in
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thermodynamic limit, namely the magnetization profiles and the steady state magnetization and energy currents, as
functions of the twisting angle θ and the coupling strength Γ. Due to the isotropy projections of the total magnetization
on all three axes are individually conserved in the steady state. We find drastically different scalings (with system
size N and with coupling) of the magnetization current components within the plane on which the twisting boundary
gradient is imposed, and the magnetization current j⊥ in the perpendicular direction. Moreover, for j⊥ we find an
intriguing non-commutativity of the limits N → ∞ and θ → π.
The plan of the paper is the following: In Sec.I we introduce the model and outline the Matrix Product Ansatz

method. In Sec.II we calculate the magnetization profiles, and in Sec.III the magnetization currents. Appendix A
contains some necessary technical details.

I. THE MODEL

We consider an open chain of N quantum spins in contact with boundary reservoirs, the time evolution of which is
given by a quantum Master equation in the Lindblad form [1, 2], [14] (we set ~ = 1)

∂ρ

∂t
= −i [H, ρ] + 4Γ(LL[ρ] + LR[ρ]). (1)

Here ρ is the reduced density matrix, H is the isotropic spin-1/2 Heisenberg Hamiltonian

HXXX =
N−1
∑

k=1

(

σx
kσ

x
k+1 + σy

kσ
y
k+1 + σz

kσ
z
k+1

)

, (2)

Γ an effective coupling with the reservoirs, and LL and LR are Lindblad dissipators which favour a relaxation of
the leftmost and the rightmost spins towards target states ρL, ρR, so that LL[ρL] = LR[ρR] = 0. As target states
we choose fully polarized states of one spin ρL = I

2 + 1
2

∑

nα
Lσ

a, ρR = I
2 + 1

2

∑

nα
Rσ

a, |~nL| = |~nR| = 1. To fix the
coordinate frame, we choose the XY -plane to be the plane spanned by the vectors ~nL, ~nR and the X– axis to point
in the ~nL direction,

~nL = (1, 0, 0) (3)

~nR = (cos θ, sin θ, 0), (4)

the angle θ between ~nL, ~nR taking values 0 ≤ θ ≤ π. A canonical, although not the most general, form of the Lindblad
action satisfying LL[ρL] = LR[ρR] = 0, is

LL,R[ρ] = XL,RρX
+
L,R − 1

2

{

ρ,X+
L,RXL,R

}

, (5)

where

XL =
1

2
(σy + iσz), XR =

1

2
(σy cos θ + iσz − σx sin θ) (6)

are polarization targeting Lindblad operators. Indeed, in absence of the unitary term in (1) the boundary spins relax
with a characteristic time Γ−1 to states ρL, ρR. Consequently, the boundary coupling introduces a twist in XY plane
across the whole system, which constantly drives the system out of equilibrium. Eq. (1) describes the exact time
evolution of a reduced density matrix, provided that the coupling to reservoir is rescaled appropriately with the time
interval between consecutive interactions of the system with the reservoirs, see [14].
Our setting is shown schematically in Fig.1. A model with a twist (6) with right twisting angle θ = π/2 in

XY –plane and more general anisotropic XXZ-Hamiltonian HXXZ(∆) =
∑N−1

k=1

(

σx
kσ

x
k+1 + σy

kσ
y
k+1 +∆σz

kσ
z
k+1

)

was
introduced in [10], and the respective NESS ρNESS(∆) was shown to possess intriguing properties. The existence of
a duality transformation between ρNESS(∆) and ρNESS(−∆), of a different form for even and odd N , allowed to
conclude that the jz magnetization current alternates its sign with system size [10]. For large Γ ≫ ∞ and for an
adequate choice of the anisotropy |∆∗(N)| < 1, which depends on system size N , one can generate a NESS arbitrarily
close to a pure state, 1 − Tr[ρ2NESS(∆

∗)] < ε [15]. For small Γ ≪ 1 the NESS ρNESS(∆) was shown to have an
anomaly peaked around the isotropic point ∆ = 1, the anomaly turning into a singularity at ∆ = 1 in the limit
Γ → 0 [16]. While some of above features were proved with general symmetry arguments, others were conjectured by
extrapolating the analytic behaviour of the system for small sizes N < 10 onto larger sizes. However, many important
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Figure 1: Schematic layout of the model. A chain of qubits is coupled at the boundaries to the reservoirs. Dissipation
introduced by the reservoirs is described by a quantum Master equation (1). The figure was taken from [10].

questions concerning scaling behaviour or finite-size corrections crucial for determining the universality, could not be
answered.
In the present work we obtain exact results for the model with a boundary twist for the thermodynamic limit

N ≫ 1 by using a Matrix Product Ansatz (MPA). Our study treats the isotropic Heisenberg chain ∆ = 1, but an
arbitrary twisting angle θ between the targeted polarizations at the ends. Our calculations are based on the following
observation: The unnormalized NESS of the model (1), (5) can be written in the form [6]

ρNESS = USN (USN )† (7)

SN = 〈0|Ω⊗N |Rθ〉 (8)

U = U⊗N

where Ω is 2× 2 matrix with operator-valued entries Ω(p) = Sz(p)σ
z + S+(p)σ

+ + S−(p)σ
−, which satisfy the SU(2)

algebra [Sz, S±] = ±S±, [S+, S−] = 2Sz for any p. The representation parameter p is defined by the action of Sz on
the lowest weight vector of SU(2), 〈0|Sz = p 〈0|, and is connected to the coupling constant Γ through p = i/Γ. More
precisely, the operators Sz(p), S±(p) operate on a semi-infinite set of states {|n〉}∞n=0, as

Sz(p) =

∞
∑

n=0

(p− n) |n〉 〈n|

S+(p) =

∞
∑

n=0

(n+ 1) |n〉 〈n+ 1|

S−(p) =

∞
∑

n=0

(2p− n) |n+ 1〉 〈n| .

Finally, the vector |Rθ〉 is a coherent state, parametrized by the twisting angle θ [17]

|Rθ(p)〉 =
∞
∑

n=0

(− cot θ
2 )

n(S−)
n

n!
|0〉 =

∞
∑

n=0

(− cot θ
2 )

n

n!

(

2p

n

)

|n〉 , (9)

where
(

2p
n

)

is a generalized binomial coefficient.
Note that the Lindblad operators (5) differ from the ones considered in [6] by a cyclic permutation σz , σx, σy →

σx, σy, σz , accounted for by introducing a unitary matrix U which performs a cyclic permutation on the basis of Pauli
matrices,

U =
1√
2

(

1 −i
1 i

)

, (10)

i.e. UσxU † = σy, UσyU † = σz , UσzU † = σx.
Some care should be taken in distinguishing the physical Hilbert space C

2 in which the matrices Ω(p) and U are
acting, and an auxiliary space ℜ spanned by the vectors {|n〉}∞n=0, in which Sz(p), S±(p) are acting. The result of
the operation (8) 〈0|Ω⊗N |R(θ)〉 is a scalar in the auxiliary space and is a matrix in the full Hilbert space for N spins
(C2)⊗N . For the following it is convenient to rewrite the (7) in the form

ρNESS = 〈0, 0|Ω(p)⊗N |Rθ, R
∗
θ〉 (11)

where the matrix

Ω(p) = UΩ(p)⊗au ΩT (−p)U † (12)
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acts in C2 ⊗ ℜ ⊗ ℜ such that ⊗au is a tensor product in the auxiliary space, and transposition ΩT is done in the
physical space only. Notation simplifies by embedding the matrices Ω(p) and ΩT (−p) in C2 ⊗ ℜ ⊗ ℜ through the
redefinitions σa → σa ⊗ I ⊗ I, Sa → I ⊗ Sa ⊗ I, where the I are the unit operators on the respective subspaces in
the tensor space C2 ⊗ ℜ ⊗ ℜ and by introducing operators Ta ≡ I ⊗ I ⊗ Ta where the operators Tz, T± also satisfy
SU(2) and the representation for Tα(p) are obtained from those for Sα(p) by the replacement p → −p. With these
definitions one has Ω(p) = Sz(p)σ

z + S+(p)σ
+ + S−(p)σ

−, ΩT (−p) = Tz(p)σ
z + T+(p)σ

− + T−(p)σ
+ and (12) can be

written without the tensor product symbol over the auxiliary space in the simpler form

Ω(p) = UΩ(p)ΩT (−p)U †. (13)

The vector 〈0, 0| = 〈0| ⊗ 〈0| in (11) is a tensor product of two lowest weight vectors 〈0, 0|S− = 〈0, 0|T− = 0, and
the vector |Rθ, R

∗
θ〉 = |R∗

θ〉 ⊗ |R∗
θ〉 is a tensor product of two coherent states (9)

|Rθ, R
∗
θ〉 =

∞
∑

n,m=0

(cot θ
2 )

n+m

n!m!

(

2p

n

)(−2p

m

)

|n,m〉 . (14)

II. STEADY STATE MAGNETIZATION PROFILES

Steady state expectations are found by the usual prescription, e.g. one-point correlations are

〈σα
m〉 = Tr(σα

mρNESS)

Z(N, θ)
(15)

where Z(N, θ) = Tr(ρNESS). It is convenient to introduce operators Bα(p) = Tr(σα
Ω(p)),

B0 = 2SzTz + S+T+ + S−T−, (16)

Bx = S+T+ − S−T−, (17)

By = Sz(T− − T+) + Tz(S− − S+), (18)

Bz = i(Sz(T+ + T−)− Tz(S+ + S−)), (19)

which act in the auxiliary space ℜ ⊗ ℜ (here and below we omit the argument p for simplicity). Note that by
construction [Sα, Tβ] = 0 for any α, β. In terms of the B-operators, the normalization factor becomes

Z(N, θ) = Tr(ρNESS) = Tr 〈0, 0|Ω(p)⊗N |Rθ, R
∗
θ〉 = (20)

= 〈0, 0| (Tr(Ω(p)))N |Rθ, R
∗
θ〉 = (21)

= 〈0, 0| (Tr(σ0
Ω(p))N |Rθ, R

∗
θ〉 = (22)

= 〈0, 0|BN
0 |Rθ, R

∗
θ〉 (23)

Analogously, the one-point expectations (15) are expressed in terms of Bα as

Mα
k,N = 〈σα

k 〉 =
〈0, 0|Bk−1

0 BαB
N−k
0 ) |Rθ, R

∗
θ〉

〈0, 0|BN
0 |Rθ, R∗

θ〉
. (24)

Using the SU(2) commutation rules for Sα and Tα, we obtain, with some effort:

[B0 [B0, Bx]] + 2{B0, Bx} = 4(CS + CT )Bx, (25)

where CS and CT are SU(2) Casimir operators CS = Sz(Sz − I) + S+S−, CT = Tz(Tz − I) + T+T−. From the
representations we readily find CS = p(p+1), CT = p(p− 1), so that the Eq.(25) becomes [B0 [B0, Bx]]+2{B0, Bx} =
8p2Bx. Due to the rotational isotropy of the XXX model, this relation is also valid for other spin components,

[B0 [B0, Bα]] + 2{B0, Bα} = 8p2Bα, α = x, y, z. (26)

Another important relation is derived by analyzing the behaviour of the quantity

lim
Γ→∞

Z(N + 1, θ)

Z(N, θ)
=

4

θ2
N2 +O(N) (27)



5

for N ≫ 1, see Appendix A. Multiplying (26) by 〈0, 0|Bk−1
0 from the left and by BN−k−1

0 ) |Rθ, R
∗
θ〉 from the right,

and using (27), (24), we obtain

(−2Mα
k+1,N+1 +Mα

k+2,N+1 +Mα
k,N+1)

Z(N + 1, θ)

Z(N, θ)

+2(Mα
k,N +Mα

k+1,N ) = 8p2Mα
k,N−1

Z(N − 1, θ)

Z(N, θ)
. (28)

Taking the continuum limit, we substitute k/N = x, Mα
k,N ,Mα

k+1,N → Mα(x),Mα(x + 1
N ) in the above and expand

in Taylor series in 1/N . In the lowest order of expansion, we can neglect the right-hand side of (28) and obtain using
(27),

∂2Mα(x)

∂x2
+ θ2Mα(x) = 0, (29)

provided that

Γ ≫ Γ∗ =
1

N
, (30)

Integrating (29) with the boundary conditions Mα(0) = σa
target(L), M

α(1) = σα
target(R) where σa

target(L,R) are targeted

boundary magnetizations,

σx
target(L) = 1;σy

target(L) = σz
target(L) = 0. (31)

σx
target(R) = cos θ; σy

target(R) = sin θ; σz
target(R) = 0, (32)

we obtain stationary density profiles

Mx(x) = cos θx

My(x) = sin θx (33)

Mz(x) = 0,

interpolating between the left and right boundary values, see Fig.2. In a finite chain these asymptotic results can be
approximated by

〈σx
k 〉 = cos

(

θ
k − 1

N − 1

)

, (34)

〈σy
k〉 = sin

(

θ
k − 1

N − 1

)

, (35)

see Fig.2. Note that for θ = π the Eqs(29,33) reproduce the results obtained in [5].
Numerical evidence as well as the leading behaviour of the normalization (27) suggest that θ2/N is a good scaling

variable. For small Γ of order of θ2/N , there are corrections to the asymptotic formula (33). In particular the Mz(x)
profile becomes harmonic as well Mz(x) = −f1(Γ) sin((x − 1

2 )ω(Γ)) see Fig.2(b).
It is quite remarkable that the stationary magnetization profile for NESS satisfies a simple harmonic equation (29)

for all magnetization components. However we were not able to derive the (29) in a shorter way. Note that the NESS
is formed with highly excited states, since the magnetization is not alternating in space as would be expected for a
ground state of a antiferromagnet (2). Reversing the sign of the spin exchange interaction H → −H amounts, for the
NESS, to reversing the sign Γ, see (1). We find that Mx(x) and My(x) are invariant under Γ → −Γ exchange, while
Mz(x) reverses its sign, Mz(x) → −Mz(x). As a consequence, the limiting harmonic shape of the magnetization
profile for Γ ≫ Γ∗ = 1

N , given by (33), does not depend on whether the bulk Hamiltonian is antiferromagnetic or
ferromagnetic one, as long as it stays isotropic [12]. Note also that harmonic density profile leads to diffusive 1/N
scaling of the trasversal magnetization current, see discussion after (52).
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Figure 2: (Color online) Exact steady state magnetization profiles from the MPA for the XXX-chain of N = 40 sites and
θ = −π/2. The three components are x (top), y (bottom) and z (middle). The continuous lines shows analytic results (34),(35)
valid for large ΓN . Panel (a): Γ = 4, Panel (b): Γ = 0.2.

III. MAGNETIZATION CURRENTS

The XXX-model, due to its isotropy, has three independent local magnetization currents defined by the time

derivative of the respective local magnetization components,
dσα

n

dt = ̂αn−1 − ̂αn, where

̂αn = 2εαβγσ
β
nσ

γ
n+1, (36)

with the Levi-Civita symbol εαβγ . In the steady state the current expectations jα(θ) := 〈̂αn〉 are position-independent.
Some important conclusions can be drawn on the base of LME symmetries, and the uniqueness of the steady state

(7). Parallel boundary driving θ = 0 does not create any gradient, and therefore all currents vanish, jα(0) = 0. For
the antiparallel alignment θ = π, the magnetization currents jz, jy vanish, but not jx, jz(π) = jy(π) = 0. To see
this, note that for θ = π the NESS has a symmetry ρNESS = ΣxρNESSΣx, where Σx = (σx)

⊗N . The operators
̂yn, ̂

z
n change sign under the action of the symmetry : Σx̂

y
nΣx = −̂yn, Σx̂

z
nΣx = −̂zn. Since Tr(̂y,zn ρNESS) =

−Tr(Σx̂
y,z
n ΣxρNESS) = −Tr(̂y,zn ΣxρNESSΣx) = −Tr(̂y,zn ρNESS), the current suppression follows, see [10, 13] for

more details.
In terms of the MPA the steady magnetization currents are given by

〈̂αk 〉 =
2εαβγ 〈0, 0|Bk−1

0 BβBγB
N−k−1
0 ) |Rθ, R

∗
θ〉

Z(N, θ)
. (37)

Using the algebra, we find

[By, Bz] = 2i(Tz − Sz)B0 (38)

[Bx, By] = B0I1 = B0(S+ − S− + T+ − T−) (39)

i[Bz, Bx] = B0I2 = B0(S+ + S− − T+ − T−) (40)

Operators (Tz−Sz), I1, I2 commute with B0, which manifests the local conservation of the magnetizations σz
n, σ

y
n, σ

x
n

respectively, so that current expectations values 〈̂αn〉 = jα are indeed position–independent. We readily derive the
exact expressions for the x – magnetization current as

jx(N) = −8ip
Z(N − 1, θ)

Z(N, θ)
, (41)

which has a characteristic bell-shaped form, see Fig.3.
For N = 2, 3, 4 the exact expressions for jx are

jx(2) =
16Γ sin2

(

θ
2

)

(3 + cos θ)

8 Γ2 + 19 + 12 cos θ + cos 2θ
, (42)

jx(3) =
16Γ sin2

(

θ
2

)

(8Γ2 + 19 + 12 cos θ + cos 2θ)

48Γ4 + 208Γ 2 + 126 + (16Γ4 + 112Γ2 + 111) cos θ + 18 cos 2θ + cos 3θ
(43)
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Figure 3: (Color online) Exact jx steady state currents from MPA (41), for θ = π/2, as function of Γ for N =
30, 40, 50(upper,middle and lower curve) (Panel(a)), and as function of system size for two fixed values of Γ = 1, 0.2(lower
and upper curve) (Panel(b)). Lines on Panel (b) show the asymptotics (45).

jx(4) =
16Γ sin2

(

θ
2

) (

48Γ4 + 208 Γ2 + 126 +
(

16Γ4 + 112Γ2 + 111
)

cos θ + 18 cos 2θ + cos 3θ
)

γ0 + γ1 cos θ + γ2 cos 2θ + 24 cos 3θ + cos 4θ
(44)

with γ0 = 688Γ6 + 3584Γ4 + 3616 Γ2 + 867, γ1 = 8
(

56Γ6 + 320Γ4 + 400Γ2 + 117
)

, γ2 = 4
(

4Γ6 + 32Γ4 + 88Γ2 + 55
)

.
For sufficiently large Γ,N using (27), we obtain

jx(N) =
2

Γ

θ2

N2
+O

(

N−3
)

, (45)

Note that the applicability of the asymptotic formula (45), as well as of other asymptotics (52),(27),(34), (35) depends
on the value of the coupling Γ which should be much larger than a characteristic value Γ∗, see (30). For small values
of Γ ≪ Γ∗, we find linear growth of jx with Γ of the form

jx(N)|Γ≪Γ∗ =
8 sin2 θ

2

3 + cos θ
Γ +O

(

Γ2
)

,

valid for all N ≥ 2. Finally, for intermediate Γ values, Γ = O(Γ∗) the function jx has a maximum in Γ, see Fig.3,
which scales as 1/N . The value of Γ which maximizes jx is well–aproximated by Γmax = 2/N , for N ≫ 1, data not
shown. The amplitude of the maximum can be approximated as jx(N)|Γ=Γmax

= θ2/(2N).

The jy(N) current has the same scaling 1/N2 for Γ ≫ Γ∗ as the current jx as it is simply proportional to the jx

current, with a proportionality coefficient (− cot θ
2 ). Indeed, e.g. for θ = ±π/2 it follows from the properties of the

coherent state that I2 |Rθ, R
∗
θ〉 = ∓4p |Rθ, R

∗
θ〉, and we obtain from (40), (37) that jx(θ = ±π/2) = ∓jz(θ = ±π/2).

For arbitrary θ, I2 |Rθ, R
∗
θ〉 = (2p(cot θ

2 + cot−1 θ
2 )I + (cot θ

2 − cot−1 θ
2 )(S − T )) |Rθ, R

∗
θ〉 and after a straightforward

calculation we obtain

jy(N, θ) = 8ip
Z(N − 1, θ)

Z(N, θ)
cot

θ

2
= − cot

θ

2
× jx(N, θ). (46)

On the contrary, the scaling and qualitative behaviour of the jz current is different, in two respects: It scales as
1/N and is a monotonically increasing function of Γ, see Fig. 4. Using properties of coherent states one obtains the
following exact expression

jz(N, θ) =
4

sin θ

〈0, 0|BN−1
0 (−Sz − Tz)) |Rθ, R

∗
θ〉

Z(N, θ)
(47)

For N = 2, 3, 4 explicit expressions for jz(N) are

jz(2) =
16Γ2 sin θ

8Γ2 + 19 + 12 cos θ + cos 2θ
(48)
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Figure 4: (Color online) Exact jz steady state current from MPA, for θ = π/2, as function of Γ for N = 30, 40, 50(upper,middle
and lower curve) (Panel(a)) and as function of system size for fixed Γ = 1 and various θ = 0.5, π/2, 6π/7 (lower, middle and
upper curve) (Panel(b)). Lines on Panel (b) show the asymptotics (52).

jz(3) =
64Γ2 sin θ

(

Γ2 + 3 + cos θ
)

48 Γ4 + 208Γ2 + 126 + (16Γ4 + 112Γ2 + 111) cos θ + 18 cos 2θ + cos 3θ
(49)

jz(4) =
32Γ2 sin θ

(

20Γ 4 + 92Γ2 + 57 + (4Γ4 + 28Γ2 + 36) cos θ + 3 cos 2θ
)

β0 + β1 cos θ + β2 cos 2θ + 24 cos3θ + cos 4θ
(50)

where β0 = 688Γ6 + 3584Γ4 + 3616Γ2 + 867, β1 = 448Γ6 + 2560Γ4 + 3200Γ2 + 936, β2 = Γ6 + 128Γ4 + 352Γ2 + 220.

For θ = π/2, the above expressions reduce to those obtained by direct diagonalization in [10], jz(2) = 8Γ2

4Γ2+9 ,

jz(3) =
16Γ2(Γ2+3)

12Γ4+52Γ2+27 , j
z(4) =

8Γ2(10Γ4+46Γ2+27)
3(28Γ6+144Γ4+136Γ2+27) . For small values of Γ ≪ Γ∗, we find quadratic growth of jz

with Γ of the form

jz(N)|Γ≪Γ∗ =
8 sin θ

(3 + cos θ)2
(N − 1)Γ2 +O

(

Γ4
)

, (51)

for all N ≥ 2. So,
For θ = π/2 Eq(51) reduces to obtained in [16] by direct diagonalization. Finally, for large Γ, N , (47) reduces to a

very simple expression,

jz(N)|Γ≫Γ∗,N≫1 =
2θ

N
+O

(

1

N2

)

(52)

see Appendix A. Note that unlike the currents jx, jy which decrease with the coupling as 1/Γ, the current jz increases

with Γ and takes a finite value (52) as Γ → ∞, see also Fig. 4. The finiteness of the magnetization current jz at
Γ → ∞ also emerges from an analysis of a perturbative expansion of NESS for small systems in 1/Γ, for arbitrary
spin exchange Z−anisotropy ∆ 6= 0 [10]. Note also that an increase of system size N results in increase of jz(N) for
small coupling Γ ≪ Γ∗due to (51), and in decrease of jz(N) for Γ ≫ Γ∗ due to (52).
Interestingly, the leading term in the asymptotic expression (52) for the current jz can be obtained from the exact

density profiles (33) if one neglects the connected part of the two-point correlations, as

jzMF (N) = 2〈σx
n〉〈σy

n+1〉 − 2〈σy
n〉〈σx

n+1〉. (53)

Making use of the exact expressions (33), we have 〈σx
n〉 = cos

(

θ n
N

)

, 〈σy
n+1〉 = sin

(

θn+1
N

)

. The Eq.(52) is then obtained

in the first non-vanishing order of the Taylor expansion of (53) in 1
N .

Another surprising property consists in the fact that for large N the maximum of the jz(N, θ) current is observed
for θ = π − O(N−1). On the other hand, see the discussion after (36), jz(N, π) = 0 for any N . Consequently, the
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limits N → ∞ and θ → π do not commute, namely

lim
θ→π

lim
N→∞

Njz(N) = 2π (54)

lim
N→∞

lim
θ→π

Njz(N) = 0, (55)

see Fig.5. The reason for the non-commutativity of the limits is the presence of an additional symmetry at θ = π as
discussed after (36).

0.5 1.0 1.5 2.0 2.5 3.0 Θ

1

2

3

4

5

6

NJZ
NESSHNL

Figure 5: (Color online) Function Njz(N) versus θ, for N = 10, 20, 100 (lower, middle, upper curves). In all cases, θ
2

ΓN
≪ 1.

The dotted line shows the asymptotics (52) for N → ∞.

IV. CONCLUSIONS

We have investigated open drivenXXX model where boundary spins are pumped in two different directions, with an
arbitrary twisting angle between them. We find explicit expressions for one- and two-point observables (magnetization
currents and magnetization profiles) in the steady state, and investigate various asymptotic regimes. We find scaling
of the magnetization current to be qualitatively different in the direction parallel to the twisting plane, and in the
orthogonal direction. We find explicit dependencies on the twisting angle, and retrieve known cases. At the point of
antiparallel driving θ = π we find a non-analyticity of the transversal magnetization current in the thermodynamic
limit.
It is instructive to compare our findings with previous results on spin transport in the isotropic Heisenberg chain.

For θ = π, we retrieve an anomalous scaling of the current 1/N2 (45), obtained in [5] (note that our jx current then
corresponds to the jz current of [5]). For θ = π, and small driving (i.e. small amplitude of the targeted boundary

values, another scaling form was obtained, j = const/
√
N [18]. In both cases the current decreases as 1/Γ with

coupling which was attributed to a quantum Zeno effect.
Our study shows that already by an infinitesimal perturbation of the antiparallel boundary alignment θ → π − ε

in the isotropic model an additional current appears, pointing in the direction perpendicular to the twisting plane,
which has yet another scaling form 1/N (52). This new current does not decrease with coupling, but, on the contrary,
saturates to its maximal value at Γ → ∞.
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Appendix A: Computation of the Z(N, θ)

Z(N, θ) is given by Eq.(23). The operator B0, restricted to the basis of vectors V = {|n, n〉}∞n=0, has the form

B0|V =

∞
∑

n=0

2sntn |n, n〉 〈n, n|+ s+n+1t
+
n+1 |n, n〉 〈n+ 1, n+ 1|+ s−n t

−
n |n+ 1, n+ 1〉 〈n, n| ,
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where sn = p−n; s+n = n ; s−n = n− 2p and expressions for tn, t
±
n are obtained from sn, s

±
n by replacing p → p∗ = −p.

Let us introduce functions F
(N)
n (p) defined as

〈0, 0|BN
0 =

N
∑

n=0

F (N)
n (p) 〈n, n| (A1)

through which the normalization factor is expressed as Z(N, θ) =
∑∞

n=0 F
(N)
n (p) 〈n, n|Rθ, R

∗
θ〉, or,

Z(N, θ) =

N
∑

n=0

F (N)
n (p)

(

cot
θ

2

)2n(
2p

n

)(−2p

n

)

(A2)

Limit of small p → 0. For p → 0, in the lowest order in p we obtain

Z(N + 1, θ) = −4p2

(

F
(N)
1 (0) +

N+1
∑

n=1

F (N+1)
n (0)

(

cot
θ

2

)2n
1

n2

)

+ o(p2). (A3)

On the other hand, from the (A1) the recursion relations for F
(N+1)
n (0) read

F (N+1)
n (0) = n2

(

2F (N)
n (0) + F

(N)
n−1(0) + F

(N)
n+1(0)

)

(A4)

with the initial condition F
(1)
n (0) = δn,1. Substituting the recursion in the (A3), and noting that F

(N)
k = 0 for k > N ,

we obtain

lim
p→0

Z(N + 1, θ)

p2
= − 16

sin2 θ

N
∑

n=1

F (N)
n (0)

(

cot
θ

2

)2n

(A5)

Here below we treat the case θ = π/2 in more detail, for which the quantity Z(N + 1, θ) becomes

lim
p→0

Z(N + 1, π/2)

p2
= −16

N
∑

n=1

F (N)
n (0) (A6)

and the recursion relations for F
(N)
n (0) are given by (A4). For further analysis, fix notation as follows: (i) F

(N)
n :=

F
(N)
n (0), (ii) F (N) =

∑N
n=0 F

N
n The conjecture is limN→∞ 1/NyF (N+1)/F (N) = c−2 with y = 2 and c = 4/π This

implies that asymptotically F (N) = F (cN)2N with some undetermined constant F . Solving the recursion explicitly
for n close to N yields the following exact expressions:

F
(N)
N+1 = 0, (A7)

F
(N)
N /(N !)2 = 1, (A8)

F
(N)
N−1/[(N − 1)!]2 = 2

N−1
∑

k=1

k2 ∼ 2N3

3
, (A9)

F
(N)
N−2/[(N − 2)!]2 = 4

N−2
∑

k=1

k2
k
∑

m=1

m2 +

N−2
∑

k=1

k2(k + 1)2 ∼ 1

2!

(

2N3

3

)2

, (A10)

F
(N)
N−3/[(N − 3)!]2 = 8

N−3
∑

k=1

k2
k
∑

m=1

m2
k
∑

n=1

n2 + 2

N−3
∑

k=1

k2
k
∑

m=1

m2(m+ 1)2

+ 2

N−3
∑

k=1

k2(k + 1)2
k+1
∑

m=1

m2 ∼ 1

3!

(

2N3

3

)3

. (A11)

Here ∼ means up to order 1/N . Hence for fixed k we obtain the large N behaviour

lim
N→∞

N−k2

F
(N)
N−k/[(N − k)!]2 =

2k

3kk!
(A12)
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However, these terms grow strongly with k and do not dominate the sum over m. To study the behaviour for
m ∝ N we make the the ansatz

F (N)
m /F (N) =

1√
4πbN

e−
(m−aN)2

2bN (A13)

This solves the recursion (A4) with a = c/2, b = c2/8 and any m− aN of the order
√
N solves the recursion (A4) up

to corrections of order 1/N for any (positive) value of c. This can be seen by setting m = aN + x
√
N and plugging

this into the recursion (A4).
The l.h.s. yields

F (N+1)
m = F (N+1) 1

√

4πb(N + 1)
e−

(m−a(N+1))2

2b(N+1)

= F (N+1) 1√
1 +N−1

1√
4πbN

e
−

(m−aN)2−2a(m−aN)+a
2

2bN
1

1+N−1

= F (N+1) 1√
1 +N−1

1√
4πbN

e
− x

2−2ax
√

N+a
2

2bN
1

1+N−1

= F (N+1)
(

1 +O(N−1)
) 1√

4πbN
e
− x

2

2b + 2ax

b
√

N
+O(N−1)

= F (N)
m

F (N+1)

F (N)

(

1 +
ax

b
√
N

+O(N−1)

)

On the r.h.s. one gets for G
(N)
m := m2(F

(N)
m+1 + F

(N)
m−1 + 2F

(N)
m )

G(N)
m ) = F (N)

m m2

[

2 + 2e
1

2bN cosh

(

m− aN

bN

)]

= F (N)
m

(

(aN)2 + 2axN3/2 + x2N
)

[

2 + 2e
1

2bN cosh

(

x

b
√
N

)]

= F (N)
m a2N2

(

1 +
2x

a
√
N

+O(N−1)

)

[

4 +O(N−1
]

Comparing terms up to order N−1/2 yields F (N+1)/F (N) = (2aN)2 and b = a2/2. With the definition of c = 4/π
this yields a = c/2 = 2/π ≈ 0.637 and b = 2/π2 ≈ 0.203. This agrees to the values we found for N = 100 from
numerically exact computation using Mathematica, apart from finite-size corrections. So we have proved the scaling

exponent y = 2 and also found the asymptotic form of F
(N)
m except for the amplitude F .

For arbitrary twisting angle θ we assume, analogously to (A13),

F
(N)
m (cot θ

2 )
2n

∑N
m=0 F

(N)
m (cot θ

2 )
2n

=
1

√

4πb(θ)N
exp

(

− (m− a(θ)N)2

2b(θ)N

)

. (A14)

Proceeding analogously to the lines indicated for θ = π/2, we find

lim
p→0

Z(N + 1, θ)

Z(N, θ)
=

4

sin2 θ
a(θ)2N2 (A15)

1

2b(θ)
=

2 sin2 θ
2

a(θ)2
. (A16)

Current Jz. We start from the expression (47). Let us denote Q(N) = 〈0, 0|BN
0 (−Sz − Tz)) |Rθ, R

∗
θ〉, so that

jz(N, θ) =
4

sin θ

Q(N−1)

Z(N, θ)
, (A17)

Only diagonal matrix elements 〈0, 0| ... |n, n〉 , n = 0, 1, ..N contribute to the Q(N). We are interested in the lowest
order in p, for which the ”diagonal” part of the vector |Rθ, R

∗
θ〉 becomes

|Rθ, R
∗
θ〉 = |0, 0〉 − 4p2

∞
∑

n=1

(

cot θ
2

)2n

n2
|n, n〉+O(p3) + nondiag. terms
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Using the above, (−Sz − Tz) |n, n〉 = 2n |n, n〉, (A1), and the recursion (A4), we obtain for small p

Q(N−1) = −8p2
N−1
∑

n=1

(

cot θ
2

)2n

n
F (N−1)
n =

= −8p2
N−1
∑

n=1

(

cot
θ

2

)2n

n
(

2F (N−2)
n + F

(N−2)
n−1 + F

(N−2)
n+1

)

=

=
−32p2

sin2 θ

(

N−2
∑

n=1

n

(

cot
θ

2

)2n

F (N−2)
n +

sin2 θ

4
F

(N−2)
1

(

cot
θ

2

)4
)

The last term on the rhs is of lower order in N and can be neglected. Substituting Q(N−1) in (A17), and using (A15),
(A5), we obtain

jz(N, θ) =
8

sin θ

∑N−2
n=1 n

(

cot θ
2

)2n
F

(N−2)
n

Z(N − 2, θ)

Z(N − 2, θ)

Z(N − 1, θ)
=

=
2 sin θ

a(θ)2N2
〈n〉,

where 〈n〉 =∑N−2
n=1 n

(

cot θ
2

)2n
F

(N−2)
n /Z(N − 2, θ). Using the Ansatz (A14 we get 〈n〉 = a(θ)N , to yield

jz(N, θ) =
2 sin θ

a(θ)N
+O

(

1

N2

)

. (A18)

The only unknown parameter a(θ), corresponding to the maximum of the distribution (A14), on the basis of
numerical evidence is conjectured to be

a(θ) =
sin θ

θ
, (A19)

up to corrections of order O(N−1). Substituting the (A19) into (A18) and (A15), we obtain (27), and then, all steady
state density profiles and steady currents (33), (45), (52).
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