000141328 001__ 141328
000141328 005__ 20240711085548.0
000141328 0247_ $$2Handle$$a2128/5714
000141328 0247_ $$2ISSN$$a1866-1793
000141328 020__ $$a978-3-89336-903-4
000141328 037__ $$aFZJ-2013-06513
000141328 041__ $$aGerman
000141328 1001_ $$0P:(DE-Juel1)128526$$aSeeger, Janka$$b0$$eCorresponding author$$gfemale$$ufzj
000141328 245__ $$aEntwicklung protonenleitender Werkstoffe und Membranen auf Basis von Lanthan-Wolframat für die Wasserstoffabtrennung aus Gasgemischen
000141328 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2013
000141328 300__ $$a130 S.
000141328 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$bbook$$mbook$$s141328
000141328 3367_ $$2DRIVER$$abook
000141328 3367_ $$01$$2EndNote$$aBook
000141328 3367_ $$2DataCite$$aOutput Types/Book
000141328 3367_ $$2ORCID$$aBOOK
000141328 3367_ $$2BibTeX$$aBOOK
000141328 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v188
000141328 502__ $$aUniversität Bochum, Diss., 2013$$bDr.$$cUniversität Bochum$$d2013
000141328 500__ $$3POF3_Assignment on 2016-02-29
000141328 520__ $$aLanthanum tungstate La$_{6-x}$WO$_{12-\delta}$ (named LWO) is a ceramic material with mixed protonic electronic conductivity. Thereby it is a good candidate membrane material for hydrogen separation from synthesis gas in a fossil pre-combustion power plant. This work shows a material optimization by substitution targeted to clearly enhance the mixed conductivity and thereby the hydrogen flow through the LWO membrane. The first part of the work shows the synthesis and characterization of unsubstituted LWO. It points out that monophase LWO powder can be reproducibly synthesized. The La/W-ratio has to be considerably smaller than the nominal ratio of La/W = 6.0. It also depends on the used sintering conditions. Different relevant properties of LWO like stability in conditions close to application, thermal expansion, sintering behavior or microstructure were determined. Furthermore, the electrical conductivity of the material was investigated. LWO exhibits a prevailing protonic conductivity up to 750 °C in wet atmospheres. Under dry atmospheres n-type conductivity was dominating. Oxygen ion and n-type conductivity dominated in wet and dry atmospheres above 750 °C. The main part of the work is concerned with the development of new LWO based materials by substitutions. The aim is to achieve an improved mixed protonic electronic conductivity. Substitution elements for lanthanum side were Mg, Ca, Sr, Ba, Ce, Nd, Tb, Y and Al, while for the tungsten side Mo, Re and Ir were used. The total conductivity of the developed materials was investigated and compared to that of the unsubstituted LWO. The substitution of lanthanum led to no appreciable enhancement of the conductivity whereas the substitution of tungsten with 20 mol% molybdenum or 20 mol% rhenium clearly improved it. This caused a hydrogen flow about seven times higher for 20 mol% molybdenum- and about ten times higher for 20 mol% rhenium-substituted LWO in comparison with the unsubstituted LWO at 700 °C. In the last part of the work first asymmetric membranes consisting of a thin functional layer and a supporting substrate to enhance the hydrogen flow by reducing the membrane thickness were developed. It succeeded in manufacturing gastight samples. However the samples became highly curved during the sintering. Therefore, further intensive component development will be required.
000141328 536__ $$0G:(DE-HGF)POF2-122$$a122 - Power Plants (POF2-122)$$cPOF2-122$$fPOF II$$x0
000141328 773__ $$y2013
000141328 8564_ $$uhttps://juser.fz-juelich.de/record/141328/files/FZJ-2013-06513.pdf$$yOpenAccess
000141328 8564_ $$uhttps://juser.fz-juelich.de/record/141328/files/FZJ-2013-06513.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000141328 8564_ $$uhttps://juser.fz-juelich.de/record/141328/files/FZJ-2013-06513.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000141328 8564_ $$uhttps://juser.fz-juelich.de/record/141328/files/FZJ-2013-06513.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000141328 909CO $$ooai:juser.fz-juelich.de:141328$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000141328 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000141328 9141_ $$y2013
000141328 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128526$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000141328 9132_ $$0G:(DE-HGF)POF3-119H$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vAddenda$$x0
000141328 9131_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000141328 920__ $$lyes
000141328 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000141328 9801_ $$aFullTexts
000141328 980__ $$abook
000141328 980__ $$aUNRESTRICTED
000141328 980__ $$aFullTexts
000141328 980__ $$aI:(DE-Juel1)IEK-1-20101013
000141328 980__ $$aVDB
000141328 981__ $$aI:(DE-Juel1)IMD-2-20101013