000141403 001__ 141403
000141403 005__ 20210129212930.0
000141403 037__ $$aFZJ-2013-06583
000141403 082__ $$a530
000141403 1001_ $$0P:(DE-HGF)0$$aBali, G. S.$$b0
000141403 1112_ $$a10th Conference on Quark Confinement and the Hadron Spectrum (Confinement X)$$cMunich$$d2012-10-08 - 2012-10-12$$gConfinement X$$wGermany
000141403 245__ $$aThermodynamic properties of QCD in external magnetic fields
000141403 260__ $$aTrieste$$bSISSA$$c2013
000141403 300__ $$a198
000141403 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1389853530_19613
000141403 3367_ $$033$$2EndNote$$aConference Paper
000141403 3367_ $$2ORCID$$aCONFERENCE_PAPER
000141403 3367_ $$2DataCite$$aOutput Types/Conference Paper
000141403 3367_ $$2DRIVER$$aconferenceObject
000141403 3367_ $$2BibTeX$$aINPROCEEDINGS
000141403 520__ $$aWe consider the effect of strong external electromagnetic fields on thermodynamic observables in QCD, through lattice simulations with 1+1+1 flavors of staggered quarks at physical quark masses. Continuum extrapolated results are presented for the light quark condensates and for their tensor polarizations, as functions of the temperature and the magnetic field. We find the light condensates to undergo inverse magnetic catalysis in the transition region, in a manner that the transition temperature decreases with growing magnetic field. We also compare the results to other approaches and lattice simulations. Furthermore, we relate the tensor polarization to the spin part of the magnetic susceptibility of the QCD vacuum, and show that this contribution is diamagnetic.
000141403 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000141403 588__ $$aDataset connected to arXivarXiv
000141403 7001_ $$0P:(DE-HGF)0$$aBruckmann, F.$$b1
000141403 7001_ $$0P:(DE-HGF)0$$aConstantinou, M.$$b2
000141403 7001_ $$0P:(DE-HGF)0$$aCosta, M.$$b3
000141403 7001_ $$0P:(DE-HGF)0$$aEndrodi, G.$$b4
000141403 7001_ $$0P:(DE-HGF)0$$aFodor, Z.$$b5
000141403 7001_ $$0P:(DE-HGF)0$$aKatz, S. D.$$b6
000141403 7001_ $$0P:(DE-Juel1)132171$$aKrieg, S.$$b7
000141403 7001_ $$0P:(DE-HGF)0$$aPanagopoulos, H.$$b8
000141403 7001_ $$0P:(DE-HGF)0$$aSchafer, A.$$b9
000141403 7001_ $$0P:(DE-HGF)0$$aSzabo, K. K.$$b10
000141403 773__ $$0PERI:(DE-600)2642026-0$$p197$$tProceedings of Science$$vConfinement X$$x1824-8039
000141403 8564_ $$uhttp://pos.sissa.it/archive/conferences/171/197/Confinement%20X_197.pdf
000141403 909__ $$ooai:juser.fz-juelich.de:141403$$pVDB
000141403 909CO $$ooai:juser.fz-juelich.de:141403$$pVDB
000141403 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000141403 9141_ $$y2013
000141403 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000141403 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000141403 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000141403 920__ $$lyes
000141403 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000141403 980__ $$acontrib
000141403 980__ $$aVDB
000141403 980__ $$aUNRESTRICTED
000141403 980__ $$aI:(DE-Juel1)JSC-20090406