000141453 001__ 141453
000141453 005__ 20210129212939.0
000141453 0247_ $$2Handle$$a2128/10231
000141453 037__ $$aFZJ-2013-06631
000141453 082__ $$a530
000141453 1001_ $$0P:(DE-HGF)0$$aBorsanyi, S.$$b0$$eCorresponding author
000141453 1112_ $$a31st International Symposium on Lattice Field Theory$$cMainz$$d2013-07-29 - 2013-08-03$$gLattice 2013$$wGermany
000141453 245__ $$aFreeze-out parameters from continuum extrapolated lattice data
000141453 260__ $$aTrieste$$bSISSA$$c2013
000141453 300__ $$a156
000141453 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000141453 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1389089915_8148
000141453 3367_ $$033$$2EndNote$$aConference Paper
000141453 3367_ $$2ORCID$$aCONFERENCE_PAPER
000141453 3367_ $$2DataCite$$aOutput Types/Conference Paper
000141453 3367_ $$2DRIVER$$aconferenceObject
000141453 3367_ $$2BibTeX$$aINPROCEEDINGS
000141453 500__ $$aarXiv:1311.7397
000141453 520__ $$aWe present continuum extrapolated lattice results for the higher order fluctuations of conserved charges in high temperature Quantum Chromodynamics. Through the matching of the grand canonical ensemble on the lattice to the net charge and net baryon distribution realized in heavy ion experiments the temperature and the chemical potential may be estimated at the time of chemical freeze-out
000141453 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000141453 588__ $$aDataset connected to arXivarXiv
000141453 7001_ $$0P:(DE-HGF)0$$aFodor, Z.$$b1
000141453 7001_ $$0P:(DE-HGF)0$$aKatz, S. D.$$b2
000141453 7001_ $$0P:(DE-Juel1)132171$$aKrieg, S.$$b3$$ufzj
000141453 7001_ $$0P:(DE-HGF)0$$aRatti, C.$$b4
000141453 7001_ $$0P:(DE-HGF)0$$aSzabo, K. K.$$b5
000141453 773__ $$0PERI:(DE-600)2642026-0$$p156$$tProceedings of Science$$vLATTICE 2013$$x1824-8039
000141453 8564_ $$uhttp://arxiv.org/abs/arXiv:1311.7397
000141453 8564_ $$uhttps://juser.fz-juelich.de/record/141453/files/1311.7397v1.pdf$$yOpenAccess
000141453 8564_ $$uhttps://juser.fz-juelich.de/record/141453/files/1311.7397v1.gif?subformat=icon$$xicon$$yOpenAccess
000141453 8564_ $$uhttps://juser.fz-juelich.de/record/141453/files/1311.7397v1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000141453 8564_ $$uhttps://juser.fz-juelich.de/record/141453/files/1311.7397v1.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000141453 8564_ $$uhttps://juser.fz-juelich.de/record/141453/files/1311.7397v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000141453 909CO $$ooai:juser.fz-juelich.de:141453$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000141453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000141453 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000141453 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000141453 9141_ $$y2013
000141453 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000141453 915__ $$0LIC:(DE-HGF)CCBYNCSA3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-ShareAlike CC BY-NC-SA 3.0
000141453 920__ $$lyes
000141453 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000141453 980__ $$acontrib
000141453 980__ $$aVDB
000141453 980__ $$aUNRESTRICTED
000141453 980__ $$ajournal
000141453 980__ $$aI:(DE-Juel1)JSC-20090406
000141453 9801_ $$aUNRESTRICTED
000141453 9801_ $$aFullTexts