001     141502
005     20240610121310.0
024 7 _ |a 10.1063/1.4838695
|2 doi
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a WOS:000328634900030
|2 WOS
024 7 _ |a 2128/17342
|2 Handle
037 _ _ |a FZJ-2013-06671
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Liu, Linjie
|0 P:(DE-Juel1)145655
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Ultrathin highly uniform Ni(Al) germanosilicide layer with modulated B8 type Ni5(SiGe)3 phase formed on strained Si1−xGex layers
260 _ _ |a Melville, NY
|c 2013
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1387531462_30246
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a We present a method to form ultrathin highly uniform Ni(Al) germanosilicide layers oncompressively strained Si1xGex substrates and their structural characteristics. The uniform Ni(Al)germanosilicide film is formed with Ni/Al alloy at an optimized temperature of 400 C withan optimized Al atomic content of 20 at.%. We find only two kinds of grains in the layer. Bothgrains show orthogonal relationship with modified B8 type phase. The growth plane is identifiedto be {10-10}-type plane. After germanosilicidation the strain in the rest Si1xGex layer is conserved,which provides a great advantage for device application.
536 _ _ |a 421 - Frontiers of charge based Electronics (POF2-421)
|0 G:(DE-HGF)POF2-421
|c POF2-421
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Jin, Lei
|0 P:(DE-Juel1)138790
|b 1
|u fzj
700 1 _ |a Knoll, Lars
|0 P:(DE-Juel1)162211
|b 2
|u fzj
700 1 _ |a Wirths, Stephan
|0 P:(DE-Juel1)138778
|b 3
|u fzj
700 1 _ |a Nichau, Alexander
|0 P:(DE-Juel1)128618
|b 4
|u fzj
700 1 _ |a Buca, Dan
|0 P:(DE-Juel1)125569
|b 5
|u fzj
700 1 _ |a Mussler, Gregor
|0 P:(DE-Juel1)128617
|b 6
|u fzj
700 1 _ |a Holländer, Bernhard
|0 P:(DE-Juel1)125595
|b 7
|u fzj
700 1 _ |a Xu, Dawei
|0 P:(DE-Juel1)145185
|b 8
|u fzj
700 1 _ |a Feng Di, Zeng
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Zhang, Miao
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Zhao, Qing-Tai
|0 P:(DE-Juel1)128649
|b 11
|u fzj
700 1 _ |a Mantl, Siegfried
|0 P:(DE-Juel1)128609
|b 12
|u fzj
773 _ _ |a 10.1063/1.4838695
|g Vol. 103, no. 23, p. 231909 -
|0 PERI:(DE-600)1469436-0
|n 23
|p 231909 -
|t Applied physics letters
|v 103
|y 2013
|x 0003-6951
856 4 _ |u https://juser.fz-juelich.de/record/141502/files/FZJ-2013-06671.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:141502
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145655
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)138790
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162211
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138778
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128618
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)125569
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)125595
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)145185
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128649
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)128609
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-421
|2 G:(DE-HGF)POF2-400
|v Frontiers of charge based Electronics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)PGI-5-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21