000141504 001__ 141504 000141504 005__ 20210129213000.0 000141504 0247_ $$2doi$$a10.3389/conf.fninf.2013.10.00029 000141504 0247_ $$2Handle$$a2128/5735 000141504 037__ $$aFZJ-2013-06672 000141504 041__ $$aEnglish 000141504 082__ $$a610 000141504 1001_ $$0P:(DE-Juel1)138466$$aStrohmer, Sven$$b0$$eCorresponding author 000141504 1112_ $$aImaging the brain at different scales: How to integrate multi-scale structural information?$$cAntwerp$$d2013-09-02 - 2013-09-06$$wBelgium 000141504 245__ $$aRelating Polarized Light Imaging Data Across Scales 000141504 260__ $$aLausanne$$bFrontiers Research Foundation$$c2013 000141504 3367_ $$2DRIVER$$aarticle 000141504 3367_ $$2DataCite$$aOutput Types/Journal article 000141504 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1570524393_9272 000141504 3367_ $$2BibTeX$$aARTICLE 000141504 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000141504 3367_ $$00$$2EndNote$$aJournal Article 000141504 520__ $$aPolarized light imaging (PLI) (Axer et al. (2011a,b)) enables scanning of individual histological human brain sections with two independent setups: a large-area polarimeter (LAP, “object space resolution”, which is referred to as “resolution” in the remainder of this abstract: 64 × 64 μm²/px) and a polarizing microscope (PM, resolution: 1.6 × 1.6 μm²/px). While PM images are of high resolution (HR) containing complex information, the LAP provides low resolution (LR) overview-like data. The information contained in an LR image is a mixture of the information of its HR counterpart (Koenderink (1984)). Each resolution yields valuable information, which multiplies if they are combined.Image registration algorithms, for example, handle multiple resolutions (1) in case of several modalities with special metrics, and (2) in multi-resolution approaches (e.g. Trottenberg et al. (2001)) to increase the stability of the optimization process of automatic image registration. In the latter case, the data is coarsened synthetically. Our goal is to directly relate measured HR to LR data of the same object, avoiding artificial intermediate steps.All images show the average light intensity, that is transmitted through a thin brain slice (Axer et al. (2011a,b)), and depict a region from the human occipital pole. The images were manually segmented and smoothed by a Gaussian kernel suitable for noise reduction and adapted to each resolution.We selected octave 2 at LR and octave 7 at HR for SURF extraction (Bay et al. (2006)), where one octave denotes a decrease in resolution by a factor of 2. Features with corresponding scales were matched with FLANN (Muja and Lowe (2009)). Homography estimation from the resulting feature point pairs used RANSAC (Fischler and Bolles (1981)). The homography and a linear interpolation scheme were applied to transfer information from LR to HR and vice versa.Localization of the HR ROI in the LR ROI is plausible (figure 1(B)), while localization in the LAP image fails, because the matched feature point positions in HR and LR do not correspond. Numerical and feature point matching inaccuracies become evident in figure 1(C).The experiments were performed with one HR ROI (figure 1(A)), one LAP ROI (figure 1(B)) and one LAP image. We plan to improve the algorithm and to obtain complete HR data sets for further exploration of the method’s performance.Figure 1. This figure shows input data and results of the experiment. The arrows indicate the flow of information and the color by which it is displayed at its destination. Subfigure (A) shows the down-scaled PM ROI (original size: 20604 px × 17157 px). (B) shows the up-scaled LAP ROI (original size: 916 px × 510 px) with estimated PM ROI location (green frame). Note, that only part of the HR ROI is contained in the LR ROI. Also, most of the fine white structures depicted in (A) vanished due to the low resolution of (B). (C) shows the down-scaled overlay image (original size: 20604 px × 17157 px) of LR data (enclosed in the green frame in (B)) transferred to HR versus PM ROI data of (A), where HR data is labeled green and transferred LR data is labeled red. HR data and transferred LR data were normalized. Numerical and feature point matching inaccuracies become evident. Also, displacement and distortion compared to HR data is visible. 000141504 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0 000141504 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x1 000141504 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x2 000141504 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000141504 7001_ $$0P:(DE-Juel1)142294$$aReckfort, Julia$$b1 000141504 7001_ $$0P:(DE-Juel1)151249$$aDohmen, Melanie$$b2 000141504 7001_ $$0P:(DE-Juel1)131647$$aHuynh, Anh Minh$$b3$$ufzj 000141504 7001_ $$0P:(DE-Juel1)131632$$aAxer, Markus$$b4$$ufzj 000141504 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/conf.fninf.2013.10.00029$$gVol. 7$$p3$$tFrontiers in neuroinformatics$$v7$$x1662-5196$$y2013 000141504 8564_ $$uhttps://juser.fz-juelich.de/record/141504/files/FZJ-2013-06672.pdf$$yOpenAccess 000141504 8564_ $$uhttps://juser.fz-juelich.de/record/141504/files/FZJ-2013-06672.jpg?subformat=icon-144$$xicon-144$$yOpenAccess 000141504 8564_ $$uhttps://juser.fz-juelich.de/record/141504/files/FZJ-2013-06672.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000141504 8564_ $$uhttps://juser.fz-juelich.de/record/141504/files/FZJ-2013-06672.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000141504 909CO $$ooai:juser.fz-juelich.de:141504$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000141504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138466$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000141504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142294$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000141504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151249$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000141504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131647$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000141504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131632$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000141504 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000141504 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0 000141504 9141_ $$y2013 000141504 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review 000141504 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review 000141504 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review 000141504 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review 000141504 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000141504 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000141504 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000141504 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000141504 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000141504 920__ $$lyes 000141504 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000141504 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1 000141504 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2 000141504 980__ $$ajournal 000141504 980__ $$aVDB 000141504 980__ $$aI:(DE-Juel1)JSC-20090406 000141504 980__ $$aI:(DE-Juel1)INM-1-20090406 000141504 980__ $$aI:(DE-82)080012_20140620 000141504 980__ $$aUNRESTRICTED 000141504 9801_ $$aFullTexts 000141504 981__ $$aI:(DE-Juel1)INM-1-20090406