000141627 001__ 141627 000141627 005__ 20210129213016.0 000141627 0247_ $$2doi$$a10.3389/fninf.2013.00043 000141627 0247_ $$2Handle$$a2128/5744 000141627 0247_ $$2WOS$$aWOS:000209207300040 000141627 0247_ $$2altmetric$$aaltmetric:2018357 000141627 0247_ $$2pmid$$apmid:24399966 000141627 037__ $$aFZJ-2013-06792 000141627 041__ $$aEnglish 000141627 082__ $$a610 000141627 1001_ $$0P:(DE-HGF)0$$aVlachos, Ioannis$$b0 000141627 245__ $$aNeural system prediction and identification challenge 000141627 260__ $$aLausanne$$bFrontiers Research Foundation$$c2013 000141627 3367_ $$2DRIVER$$aarticle 000141627 3367_ $$2DataCite$$aOutput Types/Journal article 000141627 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1570524501_5983 000141627 3367_ $$2BibTeX$$aARTICLE 000141627 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000141627 3367_ $$00$$2EndNote$$aJournal Article 000141627 520__ $$aCan we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons? This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered. 000141627 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0 000141627 536__ $$0G:(DE-Juel1)HGF-SystemsBiology$$aHASB - Helmholtz Alliance on Systems Biology (HGF-SystemsBiology)$$cHGF-SystemsBiology$$fHASB-2008-2012$$x1 000141627 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2 000141627 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x3 000141627 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000141627 7001_ $$0P:(DE-Juel1)151167$$aZaytsev, Yury$$b1$$ufzj 000141627 7001_ $$0P:(DE-HGF)0$$aSpreizer, Sebastian$$b2 000141627 7001_ $$0P:(DE-HGF)0$$aAertsen, Ad$$b3 000141627 7001_ $$0P:(DE-HGF)0$$aKumar, Arvind$$b4$$eCorresponding author 000141627 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2013.00043$$gVol. 7$$n43$$p1-10$$tFrontiers in neuroinformatics$$v7$$x1662-5196$$y2013 000141627 8564_ $$uhttps://juser.fz-juelich.de/record/141627/files/FZJ-2013-06792.pdf$$yOpenAccess 000141627 8564_ $$uhttps://juser.fz-juelich.de/record/141627/files/FZJ-2013-06792.jpg?subformat=icon-144$$xicon-144$$yOpenAccess 000141627 8564_ $$uhttps://juser.fz-juelich.de/record/141627/files/FZJ-2013-06792.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000141627 8564_ $$uhttps://juser.fz-juelich.de/record/141627/files/FZJ-2013-06792.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000141627 909__ $$ooai:juser.fz-juelich.de:141627$$pVDB 000141627 909__ $$ooai:juser.fz-juelich.de:141627$$pVDB 000141627 909__ $$ooai:juser.fz-juelich.de:141627$$pVDB 000141627 909CO $$ooai:juser.fz-juelich.de:141627$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000141627 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)136697$$aExternal Institute$$b0$$kExtern 000141627 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151167$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000141627 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000141627 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0 000141627 9141_ $$y2013 000141627 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review 000141627 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review 000141627 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review 000141627 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review 000141627 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000141627 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000141627 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000141627 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000141627 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000141627 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000141627 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1 000141627 980__ $$ajournal 000141627 980__ $$aVDB 000141627 980__ $$aI:(DE-Juel1)JSC-20090406 000141627 980__ $$aI:(DE-82)080012_20140620 000141627 980__ $$aUNRESTRICTED 000141627 9801_ $$aFullTexts