001     141627
005     20210129213016.0
024 7 _ |a 10.3389/fninf.2013.00043
|2 doi
024 7 _ |a 2128/5744
|2 Handle
024 7 _ |a WOS:000209207300040
|2 WOS
024 7 _ |a altmetric:2018357
|2 altmetric
024 7 _ |a pmid:24399966
|2 pmid
037 _ _ |a FZJ-2013-06792
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Vlachos, Ioannis
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Neural system prediction and identification challenge
260 _ _ |a Lausanne
|c 2013
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1570524501_5983
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Can we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons? This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
536 _ _ |a HASB - Helmholtz Alliance on Systems Biology (HGF-SystemsBiology)
|0 G:(DE-Juel1)HGF-SystemsBiology
|c HGF-SystemsBiology
|f HASB-2008-2012
|x 1
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 2
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 3
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Zaytsev, Yury
|0 P:(DE-Juel1)151167
|b 1
|u fzj
700 1 _ |a Spreizer, Sebastian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Aertsen, Ad
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kumar, Arvind
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.3389/fninf.2013.00043
|g Vol. 7
|0 PERI:(DE-600)2452979-5
|n 43
|p 1-10
|t Frontiers in neuroinformatics
|v 7
|y 2013
|x 1662-5196
856 4 _ |u https://juser.fz-juelich.de/record/141627/files/FZJ-2013-06792.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/141627/files/FZJ-2013-06792.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/141627/files/FZJ-2013-06792.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/141627/files/FZJ-2013-06792.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:141627
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:141627
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:141627
909 C O |o oai:juser.fz-juelich.de:141627
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-Juel1)136697
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)151167
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21