001     141675
005     20240711101510.0
024 7 _ |a 10.1016/j.ijhydene.2014.04.059
|2 doi
024 7 _ |a WOS:000336880500058
|2 WOS
037 _ _ |a FZJ-2014-00044
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Froning, Dieter
|0 P:(DE-Juel1)5106
|b 0
|e Corresponding author
245 _ _ |a Evaluation of structural changes of HT-PEFC electrodes from in-situ Synchrotron X-ray radiographs
260 _ _ |a New York, NY [u.a.]
|c 2014
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1410267300_23204
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a One of the main goals for improvement of high-temperature polymer electrolyte fuel cells (HT-PEFCs) is the increase of the fuel cell performance under different operating conditions. We investigated the correlation between operating conditions and structural changes in the electrodes by means of in-situ through-plane synchrotron X-ray radiography. From the radiographs it is possible to clearly distinguish between the electrode crack structure beneath the ribs and beneath the channels of the flow field. We present a statistical method to analyze these crack structures. For this purpose a ‘radar’ method was developed in order to obtain the width of the cracks at many different locations and the distribution of crack widths. We found a different behavior of cracks located beneath the ribs and beneath the channels and an influence of the operating conditions on local regions of the crack structure.
536 _ _ |a 123 - Fuel Cells (POF2-123)
|0 G:(DE-HGF)POF2-123
|c POF2-123
|f POF II
|x 0
700 1 _ |a Maier, Wiebke
|0 P:(DE-Juel1)128533
|b 1
700 1 _ |a Groß, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Arlt, Tobias
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Manke, Ingo
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 5
773 _ _ |a 10.1016/j.ijhydene.2014.04.059
|0 PERI:(DE-600)1484487-4
|n 17
|p 9447-9456
|t International journal of hydrogen energy
|v 39
|y 2014
|x 1879-3487
856 4 _ |z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/141675/files/FZJ-2014-00044.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:141675
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)5106
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128533
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129883
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-123
|2 G:(DE-HGF)POF2-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21