000141693 001__ 141693
000141693 005__ 20210129213029.0
000141693 0247_ $$2doi$$a10.1109/ICPP.2013.105
000141693 0247_ $$2WOS$$aWOS:000330046000093
000141693 0247_ $$2altmetric$$aaltmetric:13246174
000141693 037__ $$aFZJ-2014-00060
000141693 1001_ $$0P:(DE-Juel1)132090$$aEicker, Norbert$$b0$$eCorresponding author$$ufzj
000141693 1112_ $$a2013 42nd International Conference on Parallel Processing (ICPP)$$cLyon$$d2013-10-01 - 2013-10-04$$wFrance
000141693 245__ $$aThe DEEP Project - Pursuing Cluster-Computing in the Many-Core Era
000141693 260__ $$bIEEE$$c2013
000141693 29510 $$a2013 42nd International Conference on Parallel Processing
000141693 300__ $$a885-892
000141693 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1389191174_18637
000141693 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000141693 3367_ $$033$$2EndNote$$aConference Paper
000141693 3367_ $$2ORCID$$aCONFERENCE_PAPER
000141693 3367_ $$2DataCite$$aOutput Types/Conference Paper
000141693 3367_ $$2DRIVER$$aconferenceObject
000141693 3367_ $$2BibTeX$$aINPROCEEDINGS
000141693 520__ $$aHomogeneous cluster architectures dominating high-performance computing (HPC) today are challenged, in particular when thinking about reaching Exascale by the end of the decade, by heterogeneous approaches utilizing accelerator elements. The DEEP (Dynamical Exascale Entry Platform) project aims for implementing a novel architecture for high-performance computing consisting of two components - a standard HPC Cluster and a cluster of many-core processors called Booster. In order to make the adaptation of application codes to this Cluster-Booster architecture as seamless as possible, DEEP provides a complete programming environment. It integrates the offloading functionality given by the MPI standard with an abstraction layer based on the task-based OmpSs programming paradigm. This paper presents the DEEP project with an emphasis on the DEEP programming environment.
000141693 536__ $$0G:(DE-HGF)POF2-41G21$$a41G - Supercomputer Facility (POF2-41G21)$$cPOF2-41G21$$fPOF II$$x0
000141693 536__ $$0G:(EU-Grant)287530$$aDEEP - Dynamical Exascale Entry Platform (287530)$$c287530$$fFP7-ICT-2011-7$$x1
000141693 588__ $$aDataset connected to CrossRef Conference
000141693 7001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b1$$ufzj
000141693 7001_ $$0P:(DE-Juel1)161312$$aMoschny, Thomas$$b2$$ufzj
000141693 7001_ $$0P:(DE-Juel1)142361$$aSuarez, Estela$$b3$$ufzj
000141693 773__ $$a10.1109/ICPP.2013.105
000141693 8564_ $$uhttps://juser.fz-juelich.de/record/141693/files/FZJ-2014-00060.pdf$$yRestricted
000141693 909CO $$ooai:juser.fz-juelich.de:141693$$pec_fundedresources$$pVDB$$popenaire
000141693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132090$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000141693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000141693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161312$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000141693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142361$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000141693 9132_ $$0G:(DE-HGF)POF3-513$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vSupercomputer Facility$$x0
000141693 9131_ $$0G:(DE-HGF)POF2-41G21$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vSupercomputer Facility$$x0
000141693 9141_ $$y2013
000141693 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000141693 980__ $$acontrib
000141693 980__ $$aVDB
000141693 980__ $$aUNRESTRICTED
000141693 980__ $$acontb
000141693 980__ $$aI:(DE-Juel1)JSC-20090406