000141742 001__ 141742
000141742 005__ 20210129213038.0
000141742 037__ $$aFZJ-2014-00108
000141742 041__ $$aEnglish
000141742 1001_ $$0P:(DE-Juel1)144660$$aAlvarez Mallon, Damian$$b0$$eCorresponding author$$ufzj
000141742 245__ $$aThe Scalability of the Cluster-Booster Concept - A critical assessment of the DEEP architecture
000141742 260__ $$aMunich$$bIntel Corporation$$c2013
000141742 29510 $$aIntel European Exascale Labs - Report 2012
000141742 300__ $$a22-31
000141742 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1389195082_20532
000141742 3367_ $$2DRIVER$$abookPart
000141742 3367_ $$2ORCID$$aBOOK_CHAPTER
000141742 3367_ $$07$$2EndNote$$aBook Section
000141742 3367_ $$2BibTeX$$aINBOOK
000141742 3367_ $$2DataCite$$aOutput Types/Book chapter
000141742 520__ $$aCluster computers are dominating high-performance computing (HPC) today. The success of this architecture is based on the fact that it profits from the improvements provided by mainstream computing well known under the label of Moore's law. But trying to get to Exascale within this decade might require additional endeavors beyond surfing this technology wave. In order to find possible directions for the future we review Amdahl's and Gustafson's thoughts on scalability. Based on this analysis we propose an advanced architecture combining a Cluster with a so-called Booster element comprising of accelerators interconnected by a high-performance fabric. We argue that this architecture provides significant advantages compared to today's accelerated clusters and might pave the way for clusters into the era of Exascale computing. The DEEP project is implementing this concept. Six applications from fields having the potential to exploit Exascale systems are being ported to DEEP. We analyze one application in detail and explore the consequences of the constraints of the DEEP systems on its scalability.
000141742 536__ $$0G:(DE-HGF)POF2-41G21$$a41G - Supercomputer Facility (POF2-41G21)$$cPOF2-41G21$$fPOF II$$x0
000141742 536__ $$0G:(EU-Grant)287530$$aDEEP - Dynamical Exascale Entry Platform (287530)$$c287530$$fFP7-ICT-2011-7$$x1
000141742 7001_ $$0P:(DE-Juel1)132090$$aEicker, Norbert$$b1$$ufzj
000141742 7001_ $$0P:(DE-HGF)0$$aInnocenti, Maria Elena$$b2
000141742 7001_ $$0P:(DE-HGF)0$$aLapenta, Giovanni$$b3
000141742 7001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b4$$ufzj
000141742 7001_ $$0P:(DE-Juel1)142361$$aSuarez, Estela$$b5$$ufzj
000141742 909CO $$ooai:juser.fz-juelich.de:141742$$pec_fundedresources$$pVDB$$popenaire
000141742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144660$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000141742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132090$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000141742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000141742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142361$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000141742 9132_ $$0G:(DE-HGF)POF3-513$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vSupercomputer Facility$$x0
000141742 9131_ $$0G:(DE-HGF)POF2-41G21$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vSupercomputer Facility$$x0
000141742 9141_ $$y2013
000141742 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000141742 980__ $$acontb
000141742 980__ $$aVDB
000141742 980__ $$aUNRESTRICTED
000141742 980__ $$aI:(DE-Juel1)JSC-20090406