000014185 001__ 14185
000014185 005__ 20240619092034.0
000014185 0247_ $$2pmid$$apmid:20687589
000014185 0247_ $$2pmc$$apmc:PMC2940317
000014185 0247_ $$2DOI$$a10.1021/bi100588a
000014185 0247_ $$2WOS$$aWOS:000281052600010
000014185 0247_ $$2MLZ$$aGogoneaWLPLIDH2010
000014185 0247_ $$2altmetric$$aaltmetric:21805632
000014185 037__ $$aPreJuSER-14185
000014185 041__ $$aeng
000014185 082__ $$a570
000014185 084__ $$2WoS$$aBiochemistry & Molecular Biology
000014185 1001_ $$0P:(DE-HGF)0$$aGogonea, V.$$b0
000014185 245__ $$aCongruency between biophysical data from multiple platforms and molecular dynamics simulation of the double super helix model of nascent high-density lipoprotein
000014185 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2010
000014185 300__ $$a7323 - 7343
000014185 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000014185 3367_ $$2DataCite$$aOutput Types/Journal article
000014185 3367_ $$00$$2EndNote$$aJournal Article
000014185 3367_ $$2BibTeX$$aARTICLE
000014185 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000014185 3367_ $$2DRIVER$$aarticle
000014185 440_0 $$0798$$aBiochemistry$$v49$$x0006-2960$$y34
000014185 500__ $$aThis study was supported by National Institutes of Health Grants P01 HL098055, P01 HL076491-055328, P01 HL087018-02001 and R01 DK 080732-01.
000014185 520__ $$aThe predicted structure and molecular trajectories from >80 ns molecular dynamics simulation of the solvated Double-Super Helix (DSH) model of nascent high-density lipoprotein (HDL) were determined and compared with experimental data on reconstituted nascent HDL obtained from multiple biophysical platforms, including small angle neutron scattering (SANS) with contrast variation, hydrogen-deuterium exchange tandem mass spectrometry (H/D-MS/MS), nuclear magnetic resonance spectroscopy (NMR), cross-linking tandem mass spectrometry (MS/MS), fluorescence resonance energy transfer (FRET), electron spin resonance spectroscopy (ESR), and electron microscopy. In general, biophysical constraints experimentally derived from the multiple platforms agree with the same quantities evaluated using the simulation trajectory. Notably, key structural features postulated for the recent DSH model of nascent HDL are retained during the simulation, including (1) the superhelical conformation of the antiparallel apolipoprotein A1 (apoA1) chains, (2) the lipid micellar-pseudolamellar organization, and (3) the solvent-exposed Solar Flare loops, proposed sites of interaction with LCAT (lecithin cholesteryl acyltransferase). Analysis of salt bridge persistence during simulation provides insights into structural features of apoA1 that forms the backbone of the lipoprotein. The combination of molecular dynamics simulation and experimental data from a broad range of biophysical platforms serves as a powerful approach to studying large macromolecular assemblies such as lipoproteins. This application to nascent HDL validates the DSH model proposed earlier and suggests new structural details of nascent HDL.
000014185 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000014185 536__ $$0G:(DE-Juel1)FUEK415$$2G:(DE-HGF)$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1
000014185 588__ $$aDataset connected to Web of Science, Pubmed
000014185 650_2 $$2MeSH$$aApolipoprotein A-I: chemistry
000014185 650_2 $$2MeSH$$aBiophysics
000014185 650_2 $$2MeSH$$aDeuterium
000014185 650_2 $$2MeSH$$aHydrogen
000014185 650_2 $$2MeSH$$aLipids
000014185 650_2 $$2MeSH$$aLipoproteins: chemistry
000014185 650_2 $$2MeSH$$aLipoproteins, HDL: chemistry
000014185 650_2 $$2MeSH$$aMacromolecular Substances
000014185 650_2 $$2MeSH$$aMagnetic Resonance Spectroscopy
000014185 650_2 $$2MeSH$$aMolecular Dynamics Simulation
000014185 650_2 $$2MeSH$$aPhosphatidylcholine-Sterol O-Acyltransferase
000014185 650_2 $$2MeSH$$aProtein Structure, Secondary
000014185 650_7 $$00$$2NLM Chemicals$$aApolipoprotein A-I
000014185 650_7 $$00$$2NLM Chemicals$$aLipids
000014185 650_7 $$00$$2NLM Chemicals$$aLipoproteins
000014185 650_7 $$00$$2NLM Chemicals$$aLipoproteins, HDL
000014185 650_7 $$00$$2NLM Chemicals$$aMacromolecular Substances
000014185 650_7 $$01333-74-0$$2NLM Chemicals$$aHydrogen
000014185 650_7 $$07782-39-0$$2NLM Chemicals$$aDeuterium
000014185 650_7 $$0EC 2.3.1.43$$2NLM Chemicals$$aPhosphatidylcholine-Sterol O-Acyltransferase
000014185 650_7 $$2WoSType$$aJ
000014185 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000014185 7001_ $$0P:(DE-HGF)0$$aWu, Z.$$b1
000014185 7001_ $$0P:(DE-HGF)0$$aLee, X.$$b2
000014185 7001_ $$0P:(DE-Juel1)VDB4339$$aPipich, V.$$b3$$uFZJ
000014185 7001_ $$0P:(DE-HGF)0$$aLi, X.-M.$$b4
000014185 7001_ $$0P:(DE-Juel1)130729$$aIoffe, A.$$b5$$uFZJ
000014185 7001_ $$0P:(DE-HGF)0$$aDiDonato, J.A.$$b6
000014185 7001_ $$0P:(DE-HGF)0$$aHazen, S.L.$$b7
000014185 773__ $$0PERI:(DE-600)1472258-6$$a10.1021/bi100588a$$gVol. 49, p. 7323 - 7343$$p7323 - 7343$$q49<7323 - 7343$$tBiochemistry$$v49$$x0006-2960$$y2010
000014185 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940317
000014185 909CO $$ooai:juser.fz-juelich.de:14185$$pVDB
000014185 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000014185 9141_ $$y2010
000014185 9131_ $$0G:(DE-Juel1)FUEK505$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000014185 9131_ $$0G:(DE-Juel1)FUEK415$$aDE-HGF$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1
000014185 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0
000014185 9201_ $$0I:(DE-Juel1)VDB784$$d31.12.2010$$gIFF$$kIFF-4$$lStreumethoden$$x0
000014185 9201_ $$0I:(DE-Juel1)VDB785$$d31.12.2010$$gIFF$$kIFF-5$$lNeutronenstreuung$$x1
000014185 9201_ $$0I:(DE-Juel1)JCNS-20121112$$kJülich Centre for Neutron Science JCNS (JCNS) ; JCNS$$lJCNS$$x2
000014185 970__ $$aVDB:(DE-Juel1)126132
000014185 980__ $$aVDB
000014185 980__ $$aConvertedRecord
000014185 980__ $$ajournal
000014185 980__ $$aI:(DE-Juel1)PGI-4-20110106
000014185 980__ $$aI:(DE-Juel1)ICS-1-20110106
000014185 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000014185 980__ $$aUNRESTRICTED
000014185 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000014185 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000014185 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000014185 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000014185 981__ $$aI:(DE-Juel1)IBI-8-20200312
000014185 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000014185 981__ $$aI:(DE-Juel1)PGI-4-20110106
000014185 981__ $$aI:(DE-Juel1)ICS-1-20110106
000014185 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000014185 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000014185 981__ $$aI:(DE-Juel1)JCNS-ILL-20110128