000014185 001__ 14185 000014185 005__ 20240619092034.0 000014185 0247_ $$2pmid$$apmid:20687589 000014185 0247_ $$2pmc$$apmc:PMC2940317 000014185 0247_ $$2DOI$$a10.1021/bi100588a 000014185 0247_ $$2WOS$$aWOS:000281052600010 000014185 0247_ $$2MLZ$$aGogoneaWLPLIDH2010 000014185 0247_ $$2altmetric$$aaltmetric:21805632 000014185 037__ $$aPreJuSER-14185 000014185 041__ $$aeng 000014185 082__ $$a570 000014185 084__ $$2WoS$$aBiochemistry & Molecular Biology 000014185 1001_ $$0P:(DE-HGF)0$$aGogonea, V.$$b0 000014185 245__ $$aCongruency between biophysical data from multiple platforms and molecular dynamics simulation of the double super helix model of nascent high-density lipoprotein 000014185 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2010 000014185 300__ $$a7323 - 7343 000014185 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000014185 3367_ $$2DataCite$$aOutput Types/Journal article 000014185 3367_ $$00$$2EndNote$$aJournal Article 000014185 3367_ $$2BibTeX$$aARTICLE 000014185 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000014185 3367_ $$2DRIVER$$aarticle 000014185 440_0 $$0798$$aBiochemistry$$v49$$x0006-2960$$y34 000014185 500__ $$aThis study was supported by National Institutes of Health Grants P01 HL098055, P01 HL076491-055328, P01 HL087018-02001 and R01 DK 080732-01. 000014185 520__ $$aThe predicted structure and molecular trajectories from >80 ns molecular dynamics simulation of the solvated Double-Super Helix (DSH) model of nascent high-density lipoprotein (HDL) were determined and compared with experimental data on reconstituted nascent HDL obtained from multiple biophysical platforms, including small angle neutron scattering (SANS) with contrast variation, hydrogen-deuterium exchange tandem mass spectrometry (H/D-MS/MS), nuclear magnetic resonance spectroscopy (NMR), cross-linking tandem mass spectrometry (MS/MS), fluorescence resonance energy transfer (FRET), electron spin resonance spectroscopy (ESR), and electron microscopy. In general, biophysical constraints experimentally derived from the multiple platforms agree with the same quantities evaluated using the simulation trajectory. Notably, key structural features postulated for the recent DSH model of nascent HDL are retained during the simulation, including (1) the superhelical conformation of the antiparallel apolipoprotein A1 (apoA1) chains, (2) the lipid micellar-pseudolamellar organization, and (3) the solvent-exposed Solar Flare loops, proposed sites of interaction with LCAT (lecithin cholesteryl acyltransferase). Analysis of salt bridge persistence during simulation provides insights into structural features of apoA1 that forms the backbone of the lipoprotein. The combination of molecular dynamics simulation and experimental data from a broad range of biophysical platforms serves as a powerful approach to studying large macromolecular assemblies such as lipoproteins. This application to nascent HDL validates the DSH model proposed earlier and suggests new structural details of nascent HDL. 000014185 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0 000014185 536__ $$0G:(DE-Juel1)FUEK415$$2G:(DE-HGF)$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1 000014185 588__ $$aDataset connected to Web of Science, Pubmed 000014185 650_2 $$2MeSH$$aApolipoprotein A-I: chemistry 000014185 650_2 $$2MeSH$$aBiophysics 000014185 650_2 $$2MeSH$$aDeuterium 000014185 650_2 $$2MeSH$$aHydrogen 000014185 650_2 $$2MeSH$$aLipids 000014185 650_2 $$2MeSH$$aLipoproteins: chemistry 000014185 650_2 $$2MeSH$$aLipoproteins, HDL: chemistry 000014185 650_2 $$2MeSH$$aMacromolecular Substances 000014185 650_2 $$2MeSH$$aMagnetic Resonance Spectroscopy 000014185 650_2 $$2MeSH$$aMolecular Dynamics Simulation 000014185 650_2 $$2MeSH$$aPhosphatidylcholine-Sterol O-Acyltransferase 000014185 650_2 $$2MeSH$$aProtein Structure, Secondary 000014185 650_7 $$00$$2NLM Chemicals$$aApolipoprotein A-I 000014185 650_7 $$00$$2NLM Chemicals$$aLipids 000014185 650_7 $$00$$2NLM Chemicals$$aLipoproteins 000014185 650_7 $$00$$2NLM Chemicals$$aLipoproteins, HDL 000014185 650_7 $$00$$2NLM Chemicals$$aMacromolecular Substances 000014185 650_7 $$01333-74-0$$2NLM Chemicals$$aHydrogen 000014185 650_7 $$07782-39-0$$2NLM Chemicals$$aDeuterium 000014185 650_7 $$0EC 2.3.1.43$$2NLM Chemicals$$aPhosphatidylcholine-Sterol O-Acyltransferase 000014185 650_7 $$2WoSType$$aJ 000014185 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0 000014185 7001_ $$0P:(DE-HGF)0$$aWu, Z.$$b1 000014185 7001_ $$0P:(DE-HGF)0$$aLee, X.$$b2 000014185 7001_ $$0P:(DE-Juel1)VDB4339$$aPipich, V.$$b3$$uFZJ 000014185 7001_ $$0P:(DE-HGF)0$$aLi, X.-M.$$b4 000014185 7001_ $$0P:(DE-Juel1)130729$$aIoffe, A.$$b5$$uFZJ 000014185 7001_ $$0P:(DE-HGF)0$$aDiDonato, J.A.$$b6 000014185 7001_ $$0P:(DE-HGF)0$$aHazen, S.L.$$b7 000014185 773__ $$0PERI:(DE-600)1472258-6$$a10.1021/bi100588a$$gVol. 49, p. 7323 - 7343$$p7323 - 7343$$q49<7323 - 7343$$tBiochemistry$$v49$$x0006-2960$$y2010 000014185 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940317 000014185 909CO $$ooai:juser.fz-juelich.de:14185$$pVDB 000014185 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000014185 9141_ $$y2010 000014185 9131_ $$0G:(DE-Juel1)FUEK505$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0 000014185 9131_ $$0G:(DE-Juel1)FUEK415$$aDE-HGF$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1 000014185 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0 000014185 9201_ $$0I:(DE-Juel1)VDB784$$d31.12.2010$$gIFF$$kIFF-4$$lStreumethoden$$x0 000014185 9201_ $$0I:(DE-Juel1)VDB785$$d31.12.2010$$gIFF$$kIFF-5$$lNeutronenstreuung$$x1 000014185 9201_ $$0I:(DE-Juel1)JCNS-20121112$$kJülich Centre for Neutron Science JCNS (JCNS) ; JCNS$$lJCNS$$x2 000014185 970__ $$aVDB:(DE-Juel1)126132 000014185 980__ $$aVDB 000014185 980__ $$aConvertedRecord 000014185 980__ $$ajournal 000014185 980__ $$aI:(DE-Juel1)PGI-4-20110106 000014185 980__ $$aI:(DE-Juel1)ICS-1-20110106 000014185 980__ $$aI:(DE-Juel1)JCNS-1-20110106 000014185 980__ $$aUNRESTRICTED 000014185 980__ $$aI:(DE-Juel1)JCNS-2-20110106 000014185 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128 000014185 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128 000014185 981__ $$aI:(DE-Juel1)JCNS-2-20110106 000014185 981__ $$aI:(DE-Juel1)IBI-8-20200312 000014185 981__ $$aI:(DE-Juel1)JCNS-1-20110106 000014185 981__ $$aI:(DE-Juel1)PGI-4-20110106 000014185 981__ $$aI:(DE-Juel1)ICS-1-20110106 000014185 981__ $$aI:(DE-Juel1)JCNS-2-20110106 000014185 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128 000014185 981__ $$aI:(DE-Juel1)JCNS-ILL-20110128