000014187 001__ 14187
000014187 005__ 20240619092034.0
000014187 0247_ $$2DOI$$a10.1021/ma1022692
000014187 0247_ $$2WOS$$aWOS:000285429400048
000014187 037__ $$aPreJuSER-14187
000014187 041__ $$aeng
000014187 082__ $$a540
000014187 084__ $$2WoS$$aPolymer Science
000014187 1001_ $$0P:(DE-HGF)0$$aHarms, S.$$b0
000014187 245__ $$aFree Volume of Interphases in Model Nanovomposites Studied by Positron Annihilation Lifetime Spectroscopy
000014187 260__ $$aWashington, DC$$bSoc.$$c2010
000014187 300__ $$a10505 - 10511
000014187 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000014187 3367_ $$2DataCite$$aOutput Types/Journal article
000014187 3367_ $$00$$2EndNote$$aJournal Article
000014187 3367_ $$2BibTeX$$aARTICLE
000014187 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000014187 3367_ $$2DRIVER$$aarticle
000014187 440_0 $$04142$$aMacromolecules$$v43$$x0024-9297$$y24
000014187 500__ $$aFinancial support by German research society (SPP 1369 Interfaces and Interphases Project Ra 796/5 1) is acknowledged Scientific discussion and hints to literature by Prof G Dlubek (Halle) are deeply acknowledged Help with DSC measurements and manuscript preparation by Isabel Jonas is gratefully appreciated The authors thank Dr M Q Shaikh for careful reading of the manuscript
000014187 520__ $$aThe free volume studies were performed in well characterized model nanocomposites by positron annihilation lifetime spectroscopy (PALS) to explore the influence of the interphase nanoscale character of the hydrophobically functionalized filler particles and the nanoscale particle size on positron parameters A weakly repulsive system, which should not form an interphase, was obtained by mixing of low molecular weight poly(ethylene-alt-propylene) (PEP) and hydrophobically modified silica with varying concentration A low molecular weight sample was chosen Because of a finite centre of mass diffusion and a low radius of gyration the interstitials between particles are effectively filled and hence a most suitable model system is obtained The absence of an interphase was confirmed by neutron scattering and neutron spin echo measurements DSC experiments showed a constant glass transition temperature T-g and a decrease in Delta c(p) at T-g with increasing filler concentration as expected In contrast, PALS measurements showed decreasing glass transition temperatures and a strong drop of the thermal expansion coefficient above T-g These seemingly conflicting results are demonstrated to be due to nanoscale character of the hydrophobically functionalized filler particles with sizes in the range of the positronium diffusion length which requires taking into account out-diffusion of positronium from the particles In particular, it is shown that the changes on PALS parameters such as o-Ps lifetime or its intensity, with increasing filler content cannot be attributed to the formation of an interphase with properties different from the polymer matrix Like the neutron scattering experiments, PALS does not find any evidence of an interphase between the filler and the polymer within the resolution limit of the present technique, which is in agreement to the neutron scattering experiments
000014187 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000014187 536__ $$0G:(DE-Juel1)FUEK415$$2G:(DE-HGF)$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1
000014187 588__ $$aDataset connected to Web of Science
000014187 650_7 $$2WoSType$$aJ
000014187 7001_ $$0P:(DE-HGF)0$$aRätzke, K.$$b1
000014187 7001_ $$0P:(DE-HGF)0$$aFaupel, F.$$b2
000014187 7001_ $$0P:(DE-Juel1)VDB96975$$aSchneider, G.J.$$b3$$uFZJ
000014187 7001_ $$0P:(DE-Juel1)VDB4260$$aWillner, L.$$b4$$uFZJ
000014187 7001_ $$0P:(DE-Juel1)130917$$aRichter, D.$$b5$$uFZJ
000014187 773__ $$0PERI:(DE-600)1491942-4$$a10.1021/ma1022692$$gVol. 43, p. 10505 - 10511$$p10505 - 10511$$q43<10505 - 10511$$tMacromolecules$$v43$$x0024-9297$$y2010
000014187 8567_ $$uhttp://dx.doi.org/10.1021/ma1022692
000014187 909CO $$ooai:juser.fz-juelich.de:14187$$pVDB
000014187 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000014187 9141_ $$y2010
000014187 9131_ $$0G:(DE-Juel1)FUEK505$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000014187 9131_ $$0G:(DE-Juel1)FUEK415$$aDE-HGF$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1
000014187 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0
000014187 9201_ $$0I:(DE-Juel1)VDB784$$d31.12.2010$$gIFF$$kIFF-4$$lStreumethoden$$x0
000014187 9201_ $$0I:(DE-Juel1)VDB785$$d31.12.2010$$gIFF$$kIFF-5$$lNeutronenstreuung$$x1
000014187 9201_ $$0I:(DE-Juel1)JCNS-20121112$$kJülich Centre for Neutron Science JCNS (JCNS) ; JCNS$$lJCNS$$x2
000014187 970__ $$aVDB:(DE-Juel1)126138
000014187 980__ $$aVDB
000014187 980__ $$aConvertedRecord
000014187 980__ $$ajournal
000014187 980__ $$aI:(DE-Juel1)PGI-4-20110106
000014187 980__ $$aI:(DE-Juel1)ICS-1-20110106
000014187 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000014187 980__ $$aUNRESTRICTED
000014187 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000014187 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000014187 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000014187 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000014187 981__ $$aI:(DE-Juel1)IBI-8-20200312
000014187 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000014187 981__ $$aI:(DE-Juel1)PGI-4-20110106
000014187 981__ $$aI:(DE-Juel1)ICS-1-20110106
000014187 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000014187 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000014187 981__ $$aI:(DE-Juel1)JCNS-ILL-20110128