
A proposal for an alternative class of spin filter materials: Hybridization-induced high-T
C ferromagnetic semiconductors CoVXAl (X=Ti, Zr, Hf)
I. Galanakis, K. Özdoan, and E. aolu 
 
Citation: Applied Physics Letters 103, 142404 (2013); doi: 10.1063/1.4823820 
View online: http://dx.doi.org/10.1063/1.4823820 
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/103/14?ver=pdfcov 
Published by the AIP Publishing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

134.94.122.141 On: Fri, 10 Jan 2014 14:52:22

http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/2079205716/x01/AIP-PT/APL_ArticleDL_1213/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=I.+Galanakis&option1=author
http://scitation.aip.org/search?value1=K.+�zdoan&option1=author
http://scitation.aip.org/search?value1=E.+a�olu&option1=author
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://dx.doi.org/10.1063/1.4823820
http://scitation.aip.org/content/aip/journal/apl/103/14?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov


A proposal for an alternative class of spin filter materials:
Hybridization-induced high-TC ferromagnetic semiconductors
CoVXAl (X 5 Ti, Zr, Hf)

I. Galanakis,1,a) K. €Ozdo�gan,2,b) and E. Şaşıo�glu3,c)
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Using ab-initio electronic structure calculations, we propose an alternative class of spin filter

materials (SFMs) based on the quaternary Heusler compounds CoVXAl (X¼Ti, Zr, Hf). We show

that the p-d hybridization leads to the formation of the ferromagnetic band gap with a moderate

exchange splitting DEex and a Curie temperature TC well above the room temperature. We find that

all three compounds are thermodynamically and magnetically stable. Combination of high TC value

together with moderate exchange splitting, as well as crystal structures compatible to the existing

semiconductors and metals, makes these compounds promising candidates to find applications as

SFMs in spintronics devices. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4823820]

One of the most central challenges in spintronics is the

successful injection of spin-polarized current into a semicon-

ductor.1,2 Several approaches have been applied to achieve it

and one of the most promising routes is the use of the so-

called spin filter materials (SFMs).3,4 SFMs are magnetic

semiconductors; compounds where there is an energy gap in

both spin directions but the band structure is different for the

two spin directions leading to magnetic properties. Such

materials can be used in magnetic tunnel junctions (MTJs).

In usual MTJs, the magnetic electrodes are separated by an

insulating barrier and ballistic transport is achieved through

the tunnelling of the electrons via the barrier. The alternative

is to use a SFM as the barrier and have metallic electrodes.

Then the probability for electrons tunnelling through the

SFM barrier is different for the two spin-directions and the

flow of a spin-polarized current is present.3,4 Several spin-

valve structures based on MTJs incorporating SFMs have

been suggested in literature revealing the potential of these

compounds5,6 including also the case of a mixed ferromag-

netic (EuO) and usual insulating (MgO) barrier,7 and of a

SFM/silicon contact.8 Moreover, magnetic semiconductors

could find application also in the recently discovered “spin

Hall magnetoresistive” devices.9

Despite their potential applications, the number of mag-

netic semiconductors is very limited. The most usual repre-

sentatives are the europium chalcognides.10 EuO and EuSe

are well-known ferromagnetic and antiferromagnetic semi-

conductors, respectively.11 But it is EuS, a ferromagnetic

semiconductor, which has been most widely studied.12,13 Eu

chalcogenides crystallize in the cubic rocksalt structure but

they have very low Curie temperatures TC (EuO has the

highest TC of 69.9 K) (Ref. 11) which makes them unsuitable

for applications. Other SFMs are the ferrimagnetic

NiFe2O4,14 CoFe2O4,15 and CoCrO4 (Ref. 16) as well as the

ferromagnetic BiMnO3 compounds.17 Among these four

compounds, the latter two have very low Curie temperatures.

NiFe2O4 and CoFe2O4 have very high TC values of about

800 K but they crystallize in a spinel structure and thus are

not easily grown in the form of thin films and this leads to

relatively small spin polarization values of the injected cur-

rent in MTJs based on them; for NiFe2O4 a value of 22% has

been achieved.14,15 Thus the finding of SFMs suitable for

applications is still an open issue.

The aim of the present letter is to search for an alterna-

tive class of ferromagnetic semiconductors for spin filter

applications in spintronics. Employing ab-initio electronic

structure calculations within density functional theory, we

show that the quaternary Heusler compounds CoVXAl

(X¼Ti, Zr, Hf) are ferromagnetic semiconductors with a

Curie temperature considerably exceeding the room temper-

ature. We reveal that the p-d hybridization leads to the for-

mation of the ferromagnetic band gap with a moderate

exchange splitting DEex. It is shown that all three compounds

are thermodynamically and magnetically stable. Proposed

compounds crystallize in LiMgPdSb-type structure, which is

similar to the zincblende structure adopted by technologi-

cally important semiconductors and which is coherent also to

the cubic lattice of most metals. Furthermore, calculated lat-

tice parameters (see Table I) are very close to the ones for

well known semiconductors such as InAs (a¼ 6.06 Å) and

AlSb (a¼ 6.14 Å), which suggests that these ferromagnetic

semiconductors could be potential candidates for spin injec-

tion into those semiconductors. Note that preliminary results

for CoVTiAl have been already published in Ref. 18 and

similar compounds have been both theoretically studied19

and experimentally grown.20,21

We employ the full-potential nonorthogonal local-

orbital minimum-basis band structure scheme (FPLO)22

within the generalized gradient approximation (GGA)23 to

calculate the ground state properties. The effective

Heisenberg exchange parameters and the Curie temperature

TC are calculated using the formalism already employed in
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the case of the usual full-Heusler compounds in Ref. 24.

Prior to discussing the origin of the gap we will dwell on the

thermodynamic and magnetic stability of the considered

compounds. First, since these compounds do not exist exper-

imentally, we have performed total energy calculations to

determine their equilibrium lattice constants, which are pre-

sented in Table I. All three compounds possess parabolic de-

pendence of their total energy with respect to the lattice

constant. Ti, Zr, and Hf have very close atomic radius and

the resulting CoVTi(Zr,Hf)Al compounds have lattice con-

stants ranging from 6.04 to 6.26 Å. All three compounds are

stable as can be deduced by the formation energies DE0 pre-

sented in Table I, which are defined as the difference

between the total energy of the compound and the sum of the

total energies of the constituents (see Ref. 25 for the exact

definition). DE0 is negative meaning that the creation of the

compound is favored and the values are about 1 eV. The

appearance of a magnetic ground state can be explained in

terms of the Stoner criterion. In Figs. 1(a) and 1(b), we pres-

ent the total density of states (DOS) per formula unit (f.u.)

for both a non-magnetic and a magnetic calculation for

CoVZrAl, respectively. In the non-magnetic case the Fermi

level crosses a pick of the DOS being unstable. The system

prefers the magnetic state lowering the number of occupied

states around the Fermi level and thus its total energy. In the

third column in Table I we present the magnetic energy DEm

(in eV) defined as the difference between the magnetic and

the non-magnetic state. For all three compounds, we get neg-

ative values meaning that the magnetic state is more stable

by 0.6–0.7 eV which is a sizeable energy difference.

All three compounds posses ferromagnetic ground state

with a total spin magnetic moment per f.u. of 3.0 lB as

anticipated by the variant of the Slater-Pauling rule26,27 dis-

cussed in detail in Ref. 18. Each Co (V) atom has four Ti

(Zr, Hf) and four Al atoms as nearest neighbors and each Ti

(Zr, Hf) atom has four Co and four V atoms as nearest neigh-

bors, and thus the ferromagnetic coupling of the spin

moments is expected from the Bethe-Slater curve.28 Co and

Ti (Zr, Hf) atoms carry a relatively small spin magnetic

moment since most of the Co 3d states are occupied while

for Ti (Zr, Hf) most of the valence d states are unoccupied.

Vanadium atoms, on the other hand, carry almost all the spin

magnetic moment which ranges from 2.55 lB in CoVTiAl up

to 2.78 lB in CoVZrAl, and thus the V-V exchange interac-

tions are mainly at the origin of the high Curie temperatures

of these compounds as will be discussed later in the letter. We

should finally note that the Al atoms carry a vanishing spin

magnetic moment and thus we do not include them in Table I.

An important quantity characterizing the SFM is the so-

called exchange-splitting DEex. DEex is half the distance

between the energy positions of the minimum of the conduc-

tion bands of the two spin-directions [see Fig. 1(b)].29 Two

times the DEex is the difference in the barrier which the elec-

trons of different spin character confront when they tunnel

from one electrode to the other through the ferromagnetic

semiconductor. The largest value and thus the strongest spin

filtering effect are expected for CoVZrAl followed by

CoVHfAl, as shown in Table II. CoVTiAl has a value of

0.10 eV, less than half the value for the other two com-

pounds. Thus we will use CoVZrAl as the prototype to dis-

cuss the origin of the energy gaps in both spin-directions. In

Figs. 1(c) and 1(d), we present the DOS projected on the va-

lence states of the four atoms of CoVZrAl and in Fig. 2 we

present the band structure along two high symmetry lines in

the reciprocal space. Note that the character of a band at the

C point determines the character of the orbital at the origin

of the band in real space. Below the energy window shown

in both figures is located a single (per spin) band originating

from the 3s states of Al which is not relevant to our discus-

sion on the origin of the magnetic semiconducting behavior.

TABLE I. Calculated equilibrium lattice constants, formation energy [DE0

(in eV)], magnetic energy [DEm (in eV)], atomic and total spin magnetic

moments (in lB) for the CoVXAl (X¼Ti, Zr, Hf) compounds. Notice that

the sequence of the atoms along the diagonal in the cubic fcc unit cell is

Co-X-V-Al.

Compound a(Å) DE0 DEm mCo mY mV mTot

CoVTiAl 6.04 �1.30 �0.62 0.23 0.32 2.55 3.00

CoVZrAl 6.26 �0.95 �0.73 0.14 0.16 2.78 3.00

CoVHfAl 6.23 �0.98 �0.73 0.16 0.17 2.76 3.00

FIG. 1. (a) Total DOS per formula unit for CoVZrAl for the non-magnetic

state. (b) The same as (a) for the ferromagnetic ground state. In inset we

have enlarged the region around the bottom of the conduction bands and

show schematically the exchange splitting 2DEex. (c) DOS projected on the

valence d states of the transition metal atoms V and Co. (d) The same as (c)

for the valence p and d states of Al and Zr, respectively. Note that Fermi

energy is set to zero. Positive (negative) DOS values correspond to the

majority-spin (minority-spin) states.

TABLE II. Exchange splitting 2DEex (in eV), first three nearest neighbor-

hood V-V effective Heisenberg exchange parameters (in meV), and mean-

field and random-phase approximation estimation of the Curie temperatures

(in K) for the compounds under study. Note that number of atoms in each

coordination sphere is given in parenthesis.

Compound 2DEex J1(12) J2(6) J3(8) TMFA
C TRPA

C

CoVTiAl 0.10 8.95 �3.96 0.21 676 458

CoVZrAl 0.24 10.50 �3.12 0.35 892 652

CoVHfAl 0.20 9.96 �3.09 0.32 834 601
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We have calculated also the character of all the bands using

the so-called fat-band scheme (results are not shown) to

reveal their character as in Ref. 30 and in Fig. 3 we present

schematically the character of the bands at the C point for

both spin directions.

In the band structure in Fig. 2 most of the bands are

derived from the d-orbitals of the transition-metal atoms due

to their strong hybridization (see also Fig. 3). The reader is

referred to Refs. 18, 26, and 27 for an extended discussion

on the hybridization of these orbitals and the origin of the eg,

eu, t2g, and t1u hybrids since such a discussion is beyond the

scope of the present letter. What differs CoVTi(Zr,Hf)Al

from other Heusler compounds is the energy position of the

Al 3p-valence states. In usual Heusler compounds these

states are located below the center of the d-bands of the tran-

sition metal atoms.18,26,27 This is not the case for the com-

pounds under study. As shown in Fig. 1(d), the Al 3p states

are located in the same energy window with the d-states of

the transition metal atoms.

In the majority-spin electronic band structure, the bands

due to Al 3p-states are located between the double- (eg) and

the triple-degenerate at the C point (t2g) bands of the transi-

tion metal atoms as shown schematically in Fig. 3 and

derived from our fat band type calculations. The t2g and t1u

bands below the Fermi level have their main weight at the

Co and V atoms; away from the C point there is also a small

Al p admixture. The energy gap in the majority-spin band

structure is created between the occupied t1u and the unoccu-

pied eu states.18 The latter explains why the gap is smaller in

the majority spin band structure since the energy splitting

between the t1u and eu states is small.26

In the minority spin band structure shown in Fig. 2, the

situation is more interesting. The triple degenerate bands

just above the eg states are of Al p character followed by the

t2g transition metal bands. The latter ones have a very strong

admixture of Al p states even at the C point and thus in the

spin down band structure the p-d hybridization plays an

important role in opening the gap, as in other Al-based tran-

sition metal compounds, contributing significantly to the

large value of the minority-spin energy gap; it is close to

1 eV.31 The role of the Al p states in opening the gap is con-

firmed also by calculations where Ga and In substituted for

Al. Ga (In) has 4p (5p) as valence states which are deeper in

energy with respect to the valence 3p states of Al. This leads

to a reduced p-d hybridization and thus to smaller energy

gaps in both spin directions and our calculations have shown

that all CoV(Ti,Zr,Hf)(Ga,In) compounds are spin-gapless-

semiconductors; the gap in the majority-spin band structure

is of zero width, i.e., the valence and conduction bands

almost touch each other.32

For realistic applications Curie temperature, TC, plays a

crucial role. Since the V atoms are mainly responsible for

the magnetic properties, we take into account only V-V

exchange interactions and in Table II we present the first

three nearest neighborhood V-V exchange constants. The

nearest neighbors V atoms present a strong ferromagnetic

coupling with a J1 value about 10 meV giving a hint that TC

should be also high. Although J2 is negative these values are

smaller than J1 and ferromagnetism remains robust. Note

that the number of atoms within the second coordination

shell is also smaller than the corresponding number in first

coordination shell (see Table II). Interactions are short

ranged, as in usual half-metals,24,33 and J3 is almost negligi-

ble. Ferromagnetism in the magnetic semiconductors under

study could be explained in terms of superexchange interac-

tions similar to the case of (Ga,V)As compounds.2

Superexchange interactions are short-ranged and favor either

ferro- or antiferromagnetism as described by the Kanamori-

Goodenough rules.34,35

Employing the mean-field approximation (MFA) and

random-phase approximation (RPA) methods, we have esti-

mated the Curie temperature TC. Obtained values are pre-

sented in Table II. The RPA method is expected to give TC

values closer to the experimental ones.24 As seen, the RPA

values are about 200 K smaller than the MFA values as for

the well-studied usual Heusler compounds in Ref. 24. For

CoVTiAl the TC in RPA is 458 K while when we substitute

Zr or Hf for Ti, TC becomes 652 K and 601 K, respectively.

TC in RPA follows the trends of the vanadium spin magnetic

moments shown in Table I. These values are well-above

room temperature and thus these compounds should keep a

strong ferromagnetic character at the operating temperature

of realistic devices. Note that we have also estimated the

Curie temperature within MFA taking into account all

FIG. 2. Spin-resolved band structure of CoVZrAl. The zero energy has been

chosen to represent the Fermi level. The solid lines correspond to the

spin-up (majority-spin) electrons and the dashed lines to the spin-down

(minority-spin) electrons. The deep-lying Al bonding s band (originating

from the Al 3s states in the free atom) is not shown.

FIG. 3. Schematic representation of the character of the bands at the C point.

With blue we denote the atoms at the origin of the hybrids creating the band.

The factor on top of the lines represents the degree of degeneracy of the

band at the C point.
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possible intra- and inter-sublattice interactions but calculated

values are increased by less than 6% with respect to the val-

ues in Table II. This behavior is similar to the one observed

also in other Heusler compounds like NiMnSb and CoMnSb,

in which only one magnetic sublattice is present, i.e., Mn-

Mn exchange interactions dominate the magnetic properties.

The influence of all other interactions excluding the V-V

ones on the calculated values of the TC is expected to be

even smaller within RPA.24

In conclusion, using ab-initio electronic structure calcu-

lations we have proposed an alternative class of spin-filter

materials based on the quaternary Heusler compounds

CoVXAl (X¼Ti, Zr, Hf). We have shown that the p-d
hybridization leads to the formation of ferromagnetic band

gap with moderate exchange splitting. The proposed com-

pounds are found to be thermodynamically stable and show

a strong tendency towards ferromagnetism. Furthermore, in

terms of crystal structure they are compatible with current

semiconductors and metals. The V atoms are mainly respon-

sible for the magnetic properties and the nearest-neighboring

V-V interactions stabilize the ferromagnetic order and lead

to high values of the Curie temperature. Al atoms play a key

role since their valence p states are located at the same

energy region with the d transition metal atoms and in the

minority spin band structure they contribute to the large

energy gap. Among the three studied compounds, CoVZrAl

seems to be the most suitable for applications since it shows

the largest TC combined with the largest value of the

exchange splitting. We expect that our results would trigger

further interest in incorporating these SFMs as barriers in

magnetic tunnel junction based devices.
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