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The morphology of pure precipitated silica, silica filled in polydimethylsiloxane rubber, and silica
filled in styrene butadiene rubber was studied by means of small-angle X-ray scattering experiments.
The silica at a length scale of a few nanometers consists of primary particles, which form
aggregates, and clusters with aggregates as basic units. It is evidenced that the aggregate branching,
represented by the mass fractal dimension, and the aggregate diameter are different if pure silica and
silica in rubber are compared. Contrary, the size of the primary particles and their surface are not
influenced. It is demonstrated that the change in the aggregate morphology is due to the external
mechanical forces appearing during the mixing process. This is achieved by model experiments
using a pistil and a mortar and a composite with different silica fractions. By that means, a
systematic change in the morphology with grinding time is observed. Then, the experiments on the
composite demonstrate that the major contributions to the mass fractal dimensions are due to the
external mechanical forces. In order to test reproducibility and universal validity in the case of
precipitated silicas, independent experiments on one silica and further silicas are performed. Several
important conclusions are obtained from the study. First, it is shown that a comparison of different
pure silica samples without knowing their history may be difficult or questionable. Second, it
becomes evident that it is not sufficient to provide only a description of the materials, rather than the
details of the sample treatment have to be reported. Therefore, solely the characterization of the
morphology of the pure silica is not sufficient to be compared to the mechanical properties of the
composites. © 2010 American Institute of Physics. �doi:10.1063/1.3389480�

I. INTRODUCTION

Soft matter composites, e.g., mixtures of hard particles
and soft polymers, are a very important class of materials
offering a variety of different properties which are exploited
by many applications. For example, the modulus of natural
rubber filled with silica or carbon black can be significantly
enhanced. This change in the mechanical properties can be
attributed to the increase in the viscosity if particles are
added to a fluid as predicted by Einstein.1,2 In the case of
rubber, additionally, interactions of the polymer chains with
the filler, which depend on its surface or branching, affect the
complex modulus of composites.3–7

In order to study the morphology of the filler particles,
microscopic experiments seem to be very appropriate, e.g.,
transmission electron microscopes provide structural infor-
mation possessing a resolution at the nanometer length scale.
Consequently, such an experiment was exploited to study,
e.g., the morphology of carbon black more than 60 years
ago.8 As reported by the very recent review of Luginsland9

even nowadays the pure particles, or the fillers washed out of
the polymer matrix, are studied by microscopic experiments.
Then the structure of silica or carbon black is related to the
macroscopic properties of the composites.

Recently, it was shown that uniaxial external forces can

align the filler particles at the length scale of a few nanom-
eters and by that means change their structure.10–13 If the
particles and the rubbery matrix are mixed, mechanical
forces will occur due to the mixer, and due to particle-
particle and particle-polymer interactions, and therefore the
structure is possibly changed.7 Therefore, the cluster size of
the pure silica and the silica dispersed within a rubbery ma-
trix possibly differs.14,15 In particular, in the case of both
precipitated and pyrogenic silica dispersed in a solvent, the
break up of clusters with diameters in the range of 500 nm or
larger due to ultrasonic irradiation was demonstrated.16,17 An
influence of the ultrasonic irradiation experiments on the
structure at a length scale of 100 nm and below was not
observed, possibly because this was not the topic of the cited
study. However, structural changes in silica below 100 nm
seem to be possible, in particular, structural changes such as
the cracking of clusters and rupture of weak arms, and by
that means compacting the clusters.

At present, a full study which addresses possible
changes in the morphology due to the mixing process at the
length scale of about �10–100� nm does not exist, neither for
precipitated nor for pyrogenic silica. In order to reveal such
influences, the present work focuses on several precipitated
pure silicas before and after the influence of an external
force, and precipitated silica dispersed into different polymer
composites, studied by means of small-angle x-ray scattering
�SAXS� experiments. First, it is shown that the morphologya�Electronic mail: g.j.schneider@fz-juelich.de.
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of pure silica and silica in the polymer differs. Second, evi-
dences are presented that these differences can be attributed
to external forces due to the mixer acting during the mixing
process. Finally, it is demonstrated that filler-filler interac-
tions play a less important role if compared to the forces
induced by the external mixer. Therefore, for the first time, it
is shown that it is not sufficient to compare the structure of
pure silica or the silica washed out of the matrix, to, e.g., the
results obtained from mechanical experiments on the com-
posite material.

II. EXPERIMENTAL SECTION

A. Samples

Several precipitated silicas, possessing the trade names
VN2, VN3, and U7000, kindly provided by Evonik Degussa
GmbH, Köln, Germany, were studied by means of SAXS
experiments. Detailed descriptions of these precipitated
silicas and their synthesis are available in several
review articles.9,14,15 The polydimethylsiloxane �PDMS�
�SiO�CH3�2�n rubber filled with precipitated silica VN3 was
kindly provided by Lanxess �Leverkusen, Germany�. The
volume fraction of the filler varies from 9 to 23 vol %. To
cure the rubbers the manufacturer used 0.4 phr Varox 50 and
heated the mixtures 10 min at 175 °C using a press. Then,
the samples were vulcanized for 10 min at 170 °C and an-
nealed for 6 h at 200 °C. The styrene butadiene rubber
�SBR� filled with silica was kindly provided by the
Deutsches Institut für Kautschuktechnologie e.V., Hannover,
Germany. The mixing process of SBR �SBR 1500, Lanxess,
Leverkusen, Germany� and precipitated silica VN3 �Evonik
Degussa GmbH, Köln, Germany� consisted of two major
steps. First, the silica was added together with the stearic
acid �2 phr� to the rubber and then mixed for 4 min using an
internal mixer at 40 °C and a rotor speed of 50 rpm. Second,
the vulcanization system was incorporated into the master
batches on a two-roll-mill at 60 °C and a rotor speed of
16 rpm �first roll� and 20 rpm �second roll�. The silica frac-
tion was 9 vol %. Additionally the samples contain 1.5 phr
sulfur and 0.5 phr vulcacit.

B. SAXS experiments

The SAXS experiments were performed at the beamline
BW4 of the DORIS III storage ring at the Hamburger
Synchrotronstrahlungslabor �HASYLAB� at the Deutsches
Elektronen-Synchrotron �DESY�, Hamburg �Germany�. The
measurements using the standard transmission
configuration18,19 and were carried out at a fixed energy of
8979 eV, corresponding to a wavelength �=0.138 nm. The
scattered intensity was recorded by the two two-dimensional
detectors �Gabriel type and Mar CCD�. The intensity curves
I�q� were obtained by radially averaging and appropriate
subtraction of the background. To enlarge the accessible
range of momentum transfer q �q= �4� /��sin �, where 2� is
the scattering angle� and thus the accessible length scale,
different sample-detector distances �2 and 12 m� were

combined. Due to a recent upgrade, i.e., a better collimation
of the incoming radiation, lower q-values are
accessible and therefore several diagrams exhibit a larger q
range.20

III. THEORY

The silicas studied by the present work consist of pri-
mary particles which form aggregates due to the high volume
concentrations of the samples involved. The aggregates are
the basic units for larger clusters. By that means, a hierarchi-
cal structure, consisting of several characteristic length
scales, is created. Such an object can be reasonably well
described by the concept of fractals. Therefore, most conve-
niently, the scattering diagrams of silica can be analyzed21

and the measured intensity I can be decomposed in the scat-
tering of the primary particles, the aggregates, and larger
clusters. In a reasonable approach, the primary particles can
be represented by spheres with a rough surface, represented
by the so-called surface fractal dimension ds.

22 For example,
if the surface is smooth ds=2.0 and if ds=3.0, the surface is
infinitely rough.21 The scattered intensity of a fractal surface
is simply21

I � q−�6−ds�. �1�

Similarly, the aggregates which consist of the primary par-
ticles can be described by means of a mass fractal dimension
df, which represents the branching. For example, if the object
is linear then df =1. When a homogeneous sphere is consid-
ered, then df =3. Similarly to Eq. �1� �Ref. 21�,

I � q−df . �2�

Therefore, by means of a double logarithmic plot of the in-
tensity, the slope provides a simple access to the surface
roughness or to the mass fractal dimension. Fortunately the
slopes usually observed are different and therefore the mass
and surface fractal ranges can be distinguished very easily.

Frequently, the particles involved are polydisperse.
Therefore, characteristic oscillations, representing the diam-
eter, which would be observed in the scattering diagrams of
spheres if only a single diameter is present, are smeared out.
In such a case, the positions of the crossovers qc between the
fractal ranges provide the diameter of the primary particles d
by d=2� /qc.

23 However, in general, it is very difficult to
determine accurate values because usually the crossover is
very broad. Therefore, if the diameter of particles should be
determined, it is convenient to fit the scattered intensity by
means of a simple model for the primary particles and the
aggregates. This is achieved by decomposing the scattered
intensity in a particle and a structure factor,24 i.e.,

I � S · P . �3�

The particle factor P of a polydisperse sphere can be most
conveniently modeled by the Beaucage model22,25–29

P = G exp�−
q2Rg

2

3
� + B · �q��−�6−ds� �4�

with

154903-2 G. J. Schneider and D. Göritz J. Chem. Phys. 132, 154903 �2010�

Downloaded 16 May 2013 to 134.94.122.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



q� =
q

�erf�qRg/�6��3
.

Rg denotes the radius of gyration of the spherical particles,
which is connected to the radius R by Rg

2=3 /5R2. In the case
of monodisperse spheres with smooth surfaces, the prefactor
B is the Porod constant and G is the Guinier prefactor.22 The
meaning of the prefactors if the particles are polydisperse
and possess a rough surface are exhaustively described by
Beaucage.22,25–29 Moreover, the structure factor S for fractals
derived by Teixeira is used30,31

S�q,�,r0,df� = 1 +
��df + 1�

�qr0�df
�1 +

1

�q��2�1−df/2

�
sin��df − 1�arctan�q���

�df − 1�
. �5�

The radius of gyration of the clusters is represented by �. If
the aggregates form larger clusters, then the aggregates can
be considered as basic units of these clusters. This is simply
included in Eq. �3� by the multiplication of a second struc-
ture factor and replacing the Rg of the particles by � and
introducing a mass fractal dimension dm2. In general, the
clusters have a mass fractal dimension lower than 3 and
therefore the generalized equation

�2 = 2df�df + 1�/��df + 2��df + 5��R2 �6�

has to be used instead the simple relation between the radius
of gyration and perimeter of the cluster.32

In the present work, first, the fractal dimensions were
determined applying Eqs. �1� and �2�. Using the values de-
termined by that means, the diameters are obtained without
risking artificial contributions due to a large amount of inde-
pendent parameters by applying the described model func-
tion independently.

As indicated, usually the samples are polydisperse;
therefore, instead of Eq. �3�, more sophisticated approaches
are required.33–35 Fortunately, in the case of the silica studied
in the present work the width of the diameter distributions
are usually very narrow36 and therefore shift the crossover
only slightly,23 but do not introduce new features in the scat-
tering diagram, except the smearing of the oscillations. Fur-
thermore, although some diameter distributions are acces-
sible in the literature, by far, not all of the samples studied in
the present work are tabulated. In particular, no general theo-
retically derived solution exists which allows to include size
distributions in the particular case of hierarchical structures.
Finally, in order to reveal changes due to external forces,
only relative values are of interest and therefore the experi-
mental justification is presented below. In particular, due to
the mentioned reasons, effects due to polydispersity are ne-
glected in the present work to avoid artificial contributions,
which are only related to the analysis technique but not to the
scattering diagrams.

IV. RESULTS AND DISCUSSION

Figure 1 shows the scattering diagrams of the three pure
precipitated silicas VN3 and the silica VN3 in two different
composites. Some diagrams exhibit a larger q-window due to

the recent upgrade of the small-angle scattering instrument
as described in the literature.20 Silica VN3 �1� and silica VN3
�2� represent the scattering diagrams of two different samples
taken from the same VN3 stock. Silica VN3 �3� is taken from
a different container. Furthermore, the scattering diagrams of
silica VN3 in two different composites, silica VN3 in SBR
and silica VN3 in PDMS rubber, are depicted. The lines rep-
resent fits with the model function as explained in Sec. III. If
the diagrams of pure silica and silica in the composites are
compared, pronounced differences below q�0.08 nm−1 are
observed. Contrary, no differences are visible for larger
q-values. Moreover, within the full range, the scattering dia-
grams of silica VN3 �1�, silica VN3 �2�, and silica VN3 �3�
are almost identical. All of the curves exhibit the same cross-
over at qc�0.2–0.3 nm−1 and the scattering diagram of
silica in the SBR matrix shows a pronounced, second cross-
over at q�0.04 nm−1, representing the aggregate size. Ad-
ditionally, in the case of the scattering curve of the pure silica
�3� slight deviations of the fit and the experimental data at
the very low q-values indicate a second crossover. Because
of similar samples studied by a combination of several dif-
ferent scattering techniques and thus resolving significantly
lower q-values in comparison to the present work, such a
crossover is expected at the very low q-values of Fig. 1, e.g.,
Refs. 16 and 29. However, since the q-range accessible in
Fig. 1 is limited, it is possible that the bending is due to
damped oscillations from the aggregate itself, which is then a
similar effect as the shoulder at the high q-side of the cross-
over due to the primary particles. Furthermore deviations
from the power-law decay, i.e., the linear decay in the double
logarithmic plot, are possibly generated by the fractal struc-
ture itself.37 Therefore, future studies will have to access this
range and to characterize this crossover in detail. In particu-
lar, it shows the need of accessing very low q-values in order
to investigate the structure of silica or samples possessing
hierarchical structures, similar to the experiments shown in
the literature, e.g., Refs. 16 and 29. Due to the multilevel
structure of silica, such a crossover exists16,29 for all of the
samples studied here. Obviously, in the case of the other
samples, the crossovers are completely outside of the obser-
vation window.

FIG. 1. Scattered intensity as a function of q of pure silicas VN3 and of the
silica-rubber composites �filler fractions: 9 vol %�. The lines represent fits
with the model function.
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The radius of gyration, the surface fractal, and the mass
fractal dimension are summarized in Table I. Furthermore,
the primary particles are assumed to be spherically symmet-
ric, and therefore the radius can be derived from the radius of
gyration by R2=5 /3Rg

2. Because later the silicas VN2 and
U7000 are studied, for the sake of completeness the calcu-
lated radii and values are tabulated. The q-ranges used for
fitting the Eqs. �1� and �2� were 0.4–1 nm−1 for ds and
0.02–0.2 nm−1 for df, respectively. The fitting error is very
small, about 0.01 for the fractal dimensions and about 0.5 nm
for the primary particle size. Actually, the chosen intervals
are a compromise between the largest possible range and the
perturbations due to the influence of the crossovers. Further-
more, scattering diagrams of fractals usually show deviations
from the simple exponential decay, or the linear decay in the
log-log representation.37 Therefore, different q-ranges used
for the local fit result in different fractal dimensions, with
differences greater than the fitting error given above. How-
ever, if the q-range remains constant for all of the fits, only
the absolute values are affected, but not the conclusions
drawn out of the relative values. As shown by Table I, the
experiments provide values which are very well reproduc-
ible. This is revealed in particular if the radius and the sur-
face fractal dimension of the primary particles of VN3 are
considered. The primary particles consist of chemically
bonded SiO2 molecules,9,14,15 and hence there are no reasons
why differences should be observed. In particular, any me-
chanical force applied by the present work is not able to
crack molecular bonds, and therefore neither the surface
fractal dimension nor the diameter of the primary particle is
expected to be changed. In contrast to Fig. 1, by comparing
silica powder and silica in the composite, changes in the
slope in the high q-limit have been reported in the
literature.38–40 Marr et al.38 attributed this effect to the for-
mation of voids. Later, Rieker et al.39 and Ehrburger-Dolle et
al.40 have discovered the influence of crystallization of the
polymer on the slope and therefore an apparent growth of the
slope with increasing the filler fraction. There is no indica-
tion of crystallization in the SBR matrix. In particular, there
is no effect on the intensity in the high q-limit, i.e., on the
surface fractal dimension. Therefore, the scattering curve of
the pure SBR does not contain any indication of crystalliza-
tion and the polymer scattering contribution is significantly
lesser than that of the silica. Thus it is concluded that the
intensity values at lower q’s are only determined by the silica
scattering, and therefore the changes in the scattering dia-

grams are due to a different silica structure. A further indi-
cation that the values extracted reflect the silica is the radii of
the primary particles. On the one hand, the radii are not
changed if the pure silica and the silica polymer composites
are compared. On the other hand, the absolute values are
very close to those obtained with other scattering experi-
ments and microscopic techniques.9,12,36,41,42 Very slight dif-
ferences of scattering and microscopic experiments arise
usually due to polydispersity23 and are not considered fur-
ther, in particular because the important result that the diam-
eter of the primary particles is not influenced by the environ-
ment of the silica is not affected and even directly visible by
a comparison of the scattering diagrams in Fig. 1. Further-
more, Table I shows that the mass fractal dimensions of the
three VN3’s vary more than expected from the experimental
error. This demonstrates that fluctuations due to different
samples are possible, but the differences are significantly
smaller than the effects found by comparison of the powder
and the composites.

At the first glance, the values observed for the mass
fractal dimensions df of the powders and silica in PDMS
correspond to a diffusion limited �df =1.7� and reaction con-
trolled �df =2.1� aggregation, respectively,4 whereas the df

=2.5 of silica in SBR can be explained by a diffusion limited
cluster-monomer aggregation within the model of Witten and
Sander.16 It is worth mentioning that Schaefer et al.17 com-
pared precipitated silica and precipitated silica dispersed in
rubber, but found no differences concerning the mass fractal
dimension of the aggregates. However, contrary to the mass
fractal dimension listed in Table I, already for the pure silica
df =2.5 is reported, which is even greater than the mass frac-
tal dimension of the silica in PDMS. Due to the differences,
it is unclear whether the clustering in silica powders may
occur due to diffusion limited aggregation, e.g., due to H
bonds between the next neighbors and reaction controlled
aggregation. Therefore, this important question is addressed
below in detail.

The scattering diagram of VN3 in the SBR matrix ex-
hibits a pronounced second crossover and by the model func-
tion a radius of gyration of about 28�1 nm is extracted.
By fitting Eq. �2� using the range 0.008 nm−1	q
	0.016 nm−1, a mass fractal dimension df =1.52�0.03 is
obtained for the clusters. It is worth noting that although the
fitting error of the radius is very small, the absolute value is
influenced by df. If the whole q-range could be covered, then
possibly a slightly different slope is obtained, due to the
above mentioned deviations from the linearity.37 The radius
determined by applying the model function can be checked
exploiting that the cluster size is inverse proportional to the
position of the crossover qc.

23 Using an interpolation func-
tion �logarithmic-normal distribution� around the maximum
within a Kratky plot, as described by Ehrburger-Dolle
et al.,40 qc=0.04 nm−1 is obtained. The scattering diagram
shown by Schaefer et al.17 exhibits a crossover correspond-
ing to the aggregate size at qc=0.01 nm−1. Using a model
function they obtained a radius of gyration of 93.2 nm. The
ratios between the crossovers and the radii should be roughly
the same and therefore an estimated radius of gyration of
about 93.2 nm /4=23.3 nm is found. Keeping in mind the

TABLE I. Radius of gyration Rg, radius of primary particles r, surface
fractal dimension ds, and mass fractal dimension df of the silicas.

Sample
Rg

�nm�
R

�nm� ds df

VN3 �1� 8.7 11.3 2.00 1.74
VN3 �2� 8.7 11.3 2.00 1.87
VN3 �3� 8.7 11.3 2.00 1.68
VN2 10.5 13.6 2.00 1.83
U7000 9.6 12.5 2.00 1.92
VN3 in PDMS 8.7 11.3 2.00 2.16
VN3 in SBR 8.7 11.3 2.00 2.41
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two different fitting procedures used and the crude estimation
of qc by simply fitting an interpolation function the values
agree very well.

Using Eq. �6� and df =2.41, a perimeter radius Rcluster

=39 nm can be calculated. Exploiting the scaling relation
N= �Rcluster /R�df, the aggregation number of N�20 is ob-
tained. This is in the range of 10–100, which seem to be the
typical number of particles in aggregates.17 It is worth men-
tioning that there a several procedures to achieve the aggre-
gation number, even if there are several possibilities for cal-
culating it from the scaling relation.21,43,44 However, the
following discussion does not rely on differences in the ab-
solute value due to the different ways and therefore possible
consequences are not considered further. In the case of the
pure silica �3�, the radius of gyration seems to be greater.
Due to the limited range an exact determination is difficult or
even impossible. However, the model function can be used to
make a rough estimate. If the scattering diagram of the pure
silica �3� shows a crossover at the very low q-values, then a
radius of gyration of about 50 nm is found. If, however, the
crossover is slightly outside the observation window so that
the radius of gyration already influences the scattering curve,
but the crossover is not visible, then a radius of gyration of
about 100 nm is estimated. These values correspond to pe-
rimeter radii of 82 and 164 nm, respectively, and are consis-
tent with the observations of Schaefer et al.17 who covered a
much broader range. By means of the scaling relation, thus a
aggregation number is found, which varies between 28 and
89 particles within each aggregate. Although this is a crude
approximation, the conclusion is possible that together with
the increasing mass fractal dimension and shrinking aggre-
gate size, the mean number of primary particles in the aggre-
gates decreases. This leads to the important conclusion that
the aggregate does not simply shrink due to a compaction,
rather, a rupture of particles or a breakage of aggregates has
to be included. However, since the estimation of the aggre-
gation number of the pure silica is very crude, neither a
breakage nor a rupture can be excluded.

The most important observations taken from Fig. 1 and
Table I are that the aggregates of the silica in the composite
are smaller and exhibit a higher mass fractal dimension than
that of the pure silica. At larger length scales, these observa-
tions are attributed to external forces acting on both precipi-
tated and pyrogenic silica.14–17 Such forces may be due to the
mixing process of the composite, and can be divided in ex-
ternal ones resulting from the mixer itself and internal forces
due to filler-filler and/or filler-polymer interactions during
the mixing process. This could lead to a break up of clusters,
a rupture of weak arms by decreasing the size simply by
compacting the particles.7

In order to test whether these assumptions are suitable to
explain the different morphologies, simply a pistil and a mor-
tar are sufficient to study the influence of external forces
acting on pure silica. By that means, the silica was milled a
selected time and then a part was removed to perform the
scattering experiments. This was continued several times in
order to obtain the time dependency. As an example, Fig. 2
shows that the mass fractal dimension of the sample VN3 �1�
grows with increasing grinding time. Figure 3 illustrates that

the same behavior is observed with the different precipitated
silicas; additionally, the reproducibility is shown by the silica
VN3 �1� and VN3 �2�. The lines represent the mass fractal
dimension of silica in the two different rubber composites.
Furthermore Fig. 3 demonstrates that after 60 min, values are
reached which are similar to the mass fractal dimension
found in the silica-PDMS composite. This observation is fur-
ther illustrated by Fig. 4, which compares the scattering dia-
grams of silica VN3 �1� milled for 60 min and silica in the
PDMS matrix. Although it seems that the mass fractal di-
mensions tend to a constant value at long milling times, the
mass fractal dimension of silica in SBR demonstrates that
higher fractal dimensions are possible. Therefore, it is con-
cluded that by increasing the forces and/or the grinding time,
the mass fractal dimension will increase further. Of course,
from the theoretical view, a maximum mass fractal dimen-
sion df =3 which reflects a compact and homogeneous three-
dimensional object cannot be exceeded.

Although these results evidence that the mass fractal di-
mension of the silicas can be changed due to external me-
chanical forces, it still remains unclear whether the forces
acting on the silica in the polymer matrix are due to the
influence of the external mixer or because of the internal
forces. This question can be further addressed by studying
the composite and various silica fractions. By increasing the

FIG. 2. Scattered intensity of pure silica as a function of q and various
grinding times.

FIG. 3. Mass fractal dimension of pure silicas, VN3 �1�, VN3 �2�, VN2, and
U7000, as a function of the grinding time. The dotted lines represents the
value of df found for silica in PDMS �df =2.16� and silica in SBR
�df =2.41�.
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silica fraction, the viscosity of the mixture enormously
grows, which can be traced back to mutual interaction of the
filler particles.9,14,15 As a simple model, one can assume that
the distances between the particles are changed and therefore
the shear forces involved. Furthermore, interactions of the
polymer chains with the silica depend on the surface
available.6 Both explanations provide a simple tool to ex-
plain why the shear forces acting on the clusters are higher if
the filler fraction is enlarged. Figure 5 compares the scatter-
ing diagrams of the silica-PDMS composites for various
silica fractions. Although the volume fraction of the filler
varies from 9 up to 23 vol % almost no differences are ob-
served. This is further illustrated by Fig. 6, which demon-
strates that the mass fractal dimension does not depend sys-
tematically on the filler fraction. Therefore, the average value
of df =2.16 can be calculated as illustrated by the line. Of
course, since above the percolation threshold, collisions of
silica particles are very likely, internal interactions somehow
contribute to the change in the mass fractal dimension. How-
ever, the above results demonstrate that the internal interac-
tions are of less importance if compared to the external in-
fluence. Therefore, it is concluded that the two different mass
fractal dimensions of silica in the two composites are mainly
due to differences in the mixing processes. However, a best
possible proof of this conclusion would require a further

study. Finally, one should be aware that these conclusions
refer only to the mixing process. No attempt is made to
evaluate the influence of filler-filler interactions with respect
to the mechanical properties of the composite material be-
cause evidences for such interactions are already reported in
the literature.7,45,46

The above experiments unambiguously demonstrate that
due to the external forces during the mixing process, the
mass fractal dimension of the aggregates increase. Further-
more a decrease in the size was observed. Therefore the mor-
phology of pure silica and silica in the composites is differ-
ent. Only very recently it was shown that the structure of
aggregates of precipitated silica in PDMS can be changed
simply by applying uniaxial external forces due to stretching
of the rubber.13 Contrary, experiments on both precipitated
and pyrogenic silica show that sonication does not affect the
aggregate structure.14–17 At the first glance the experiments
seem to be inconsistent. However, there are several differ-
ences concerning the samples which may explain the contra-
dictions. On the first hand, the powder samples shown in the
present work exhibit a mass fractal dimension of df 	2 and
change to a maximum value df �2.5. Contrary, e.g., Schaefer
et al.17 report df =2.5 for the pure precipitated silica and no
change by the external forces, neither by the sonication nor
by the compounding. Possibly, if a pretreated silica is mixed
in a polymer matrix, then no change would occur. However,
as shown in the literature,13 it is very likely that even higher
mass fractal dimensions than df =2.5 are obtained. On the
other hand, it is possible that the solvent, necessary to per-
form the sonication process and the light scattering experi-
ments, changes the mutual interactions. For example, due to
the different environment of silica powder and silica in the
solvent, possibly by the solvent molecules, interactions be-
tween the silica particles are mediated or created. This could
probably lead to very strong bonds which result in very
stable and strongly bonded aggregates, whereas the powder
itself contains only weak aggregates. However, it should be
mentioned that the experiments reported in the present work
do not exclude strongly bonded primary particles. For ex-
ample, it is possible that very small aggregates building a
cluster cannot be distinguished unambiguously from a cluster
formed by primary particles itself. Moreover, concerning the

FIG. 4. Comparison of the scattered intensity as a function of q of pure
silica ground 60 min and the silica-rubber nanocomposite.

FIG. 5. Scattered intensity of silica in PDMS as a function of q and various
volume fractions as indicated.

FIG. 6. Mass fractal dimension as a function of the silica fraction. The
dotted line represents the average value df =2.15.
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light scattering results of the literature16,17 changes occurring
in the mass fractal dimension of the aggregates probably are
not resolved because of both the length scale involved and
because of the multilevel structure of silica. Additionally, if
pure silica is prepared for the microscopic experiments then
a frequently applied technique is the dispersion of silica in a
solvent such as, e.g., toluene. Then the solution is dropped
onto the carrier and afterward dried. Only very recently was
it observed that in this case, the particles reagglomerate and
larger structures are generated.47 In such cases, the changes
in the morphology reported by the present work are difficult
to be observed by microscopic techniques. Due to the new
findings in the present work, we conclude that in particular
the preparation techniques seem to be of major importance.
This does not only affect the microscopic techniques, e.g.,
transmission electron microscopy, where very thin composite
samples are necessary, and therefore pure silicas dispersed in
solvent or silica washed out from the polymer matrices are
preferentially studied.9 It is, in particular, of importance if
scattering experiments on the pure silica dispersed in a sol-
vent are applied because the structure observed by means of
such techniques is probably different from the true morphol-
ogy present in the composite or in the powder. Moreover,
comparing the structure of the pure silica with the mechani-
cal properties of the composite may be questionable because
as shown above, it is likely that the morphology is different.
However, due to the results provided above it is very likely
that it is possible to pretreat the silica particles by mechani-
cal forces and then to obtain a better mixture.

Usually, silica is characterized by a few constitutive pa-
rameters, such as, e.g., the Brunauer, Emmett, and Teller
�BET� surface area, which is a widely used technique for
estimating the surface area by gas adsorption. In the case of
the silicas studied above, the BET surface area is 170 m2 /g
�VN3/U7000� and 125 m2 /g �VN2�.9 Obviously the results
does not or at least does not significantly depend on this
number. The same result is obtained for the other parameters
such as the cetyltrimethylammonium bromide surface area or
the n-dibutyl phthalate absorption number. Perhaps the dif-
ferences in these values are too small to be reflected by the
above experiments.

Finally, possible reasons addressing the increase in the
mass fractal dimension should be discussed. The experiments
demonstrate that the aggregates are smaller and contain
lesser primary particles within the SBR composite if com-
pared to the pure silica. Therefore, it is very tempting to
assume further correlations between df, N, and Rcluster beyond
the scaling relation applied above. However, a decrease in
the aggregate size is not necessarily connected to an increase
in the mass fractal dimension.21 This is exemplified by a
simple homogeneous object which has a mass fractal dimen-
sion df =3. If such a sample is broken in two pieces, then the
mass fractal dimension of both subunits is still df =3. There-
fore, a simple break up of the aggregates would not neces-
sarily explain the change in the mass fractal dimension.
However, as shown by the literature, silica aggregates pos-
sess only a few weak arms if any but more or less loosely
packed primary particles.13,21,42 Therefore, a simple compac-

tion by a reduction in the distances of the primary particles
including possible weak arms supported by a breakup of
clusters is most likely.

V. CONCLUSIONS

Pure silicas as well as silica filled composites were stud-
ied by means of SAXS experiments. It was evidenced that
the mass fractal dimension as well as the aggregate size is
different if the pure silica and silica in composites are com-
pared. The differences can be mainly attributed to the me-
chanical forces acting during the mixing process. This was
proven by applying a pistil and mortar to the pure silica.
Therewith, a systematic increase in the mass fractal dimen-
sion with growing grinding time was found. As an important
drawback of both results, it would be questionable whether it
is sufficient to correlate the morphology of pure filler and the
viscosity of the silica-rubber mixture. Additionally the ex-
periment demonstrates that a decrease in the cluster size is
possible even before the silica is dispersed in rubber. Prob-
ably, this would decrease the mixing time and thus reduce
chain degradation and therefore could result in improved ma-
terials. However, more importantly, the comparison of differ-
ent pure silica samples demonstrates that without knowing
their history the interpretation of the results may be difficult
or questionable. Furthermore, it becomes evident that is not
sufficient to provide only a description of the materials,
rather, the details of the sample treatment have to be known.
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