001     141924
005     20210129213104.0
024 7 _ |a 10.1074/jbc.M113.513432
|2 doi
024 7 _ |a 1083-351X
|2 ISSN
024 7 _ |a 0021-9258
|2 ISSN
024 7 _ |a WOS:000329189700030
|2 WOS
037 _ _ |a FZJ-2014-00261
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Gruning, C. S. R.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The Off-rate of Monomers Dissociating from Amyloid-ß Protofibrils
260 _ _ |a Bethesda, Md.
|c 2013
|b Soc.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1389360431_16614
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a The interconversion of monomers, oligomers, and amyloid fibrils of the amyloid-peptide (A) has been implicated in the pathogenesis of Alzheimer disease. The determination of the kinetics of the individual association and dissociation reactions is hampered by the fact that forward and reverse reactions to/from different aggregation states occur simultaneously. Here, we report the kinetics of dissociation of A Monomers from protofibrils, prefibrillar high molecular weight oligomers previously shown to possess pronounced neurotoxicity. An engineered binding protein sequestering specifically mono-meric A was employed to follow protofibril dissociation by tryptophan fluorescence, precluding confounding effects of reverse or competing reactions. A protofibril dissociation into monomers follows exponential decay kinetics with a time constant of ~2 h at 25 °C and an activation energy of 80 kJ/mol, values typical for high affinity biomolecular interactions. This study demonstrates the high kinetic stability of A protofibrils toward dissociation into monomers and supports the delineation of the A folding and assembly energy landscape.
536 _ _ |a 452 - Structural Biology (POF2-452)
|0 G:(DE-HGF)POF2-452
|c POF2-452
|x 0
|f POF II
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Klinker, S.
|0 P:(DE-Juel1)161261
|b 1
|u fzj
700 1 _ |a Wolff, M.
|0 P:(DE-Juel1)144676
|b 2
|u fzj
700 1 _ |a Schneider, M.
|0 P:(DE-Juel1)159185
|b 3
|u fzj
700 1 _ |a Toksöz, K.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Klein, A. N.
|0 P:(DE-Juel1)145785
|b 5
|u fzj
700 1 _ |a Nagel-Steger, L.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Willbold, D.
|0 P:(DE-Juel1)132029
|b 7
|u fzj
700 1 _ |a Hoyer, W.
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1074/jbc.M113.513432
|g Vol. 288, no. 52, p. 37104 - 37111
|p 37104 - 37111
|n 52
|0 PERI:(DE-600)1474604-9
|t The @journal of biological chemistry
|v 288
|y 2013
|x 1083-351X
856 4 _ |u http://www.jbc.org/content/288/52/37104.full.pdf+html
856 4 _ |u https://juser.fz-juelich.de/record/141924/files/FZJ-2014-00261.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:141924
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161261
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144676
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159185
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145785
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)132029
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-559H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-450
|0 G:(DE-HGF)POF2-452
|2 G:(DE-HGF)POF2-400
|v Structural Biology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l BioSoft
914 1 _ |y 2013
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21