001     14240
005     20240610120435.0
024 7 _ |2 pmid
|a pmid:20665069
024 7 _ |2 DOI
|a 10.1007/s10858-010-9437-5
024 7 _ |2 WOS
|a WOS:000282102300005
037 _ _ |a PreJuSER-14240
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
084 _ _ |2 WoS
|a Spectroscopy
100 1 _ |0 P:(DE-Juel1)VDB70443
|a Pacheco, V.
|b 0
|u FZJ
245 _ _ |a Assessment of GABARAP self-association by its diffusion properties
260 _ _ |a Dordrecht [u.a.]
|b Springer Science + Business Media B.V
|c 2010
300 _ _ |a 49 - 58
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 9165
|a Journal of Biomolecular NMR
|v 48
|x 0925-2738
|y 1
500 _ _ |a O. H. Weiergraber is grateful to Georg Buldt for continuous generous support. V. Pacheco appreciates support by Heike Schneider. This work was supported by a Deutsche Forschungsgemeinschaft (DFG) grant to D. W. (Wi1472/5) and a PhD scholarship from the Deutscher Akademischer Austauschdienst (DAAD) to P. M.
520 _ _ |a Gamma-aminobutyric acid type A receptor-associated protein (GABARAP) belongs to a family of small ubiquitin-like adaptor proteins implicated in intracellular vesicle trafficking and autophagy. We have used diffusion-ordered nuclear magnetic resonance spectroscopy to study the temperature and concentration dependence of the diffusion properties of GABARAP. Our data suggest the presence of distinct conformational states and provide support for self-association of GABARAP molecules. Assuming a monomer-dimer equilibrium, a temperature-dependent dissociation constant could be derived. Based on a temperature series of (1)H(15)N heteronuclear single quantum coherence nuclear magnetic resonance spectra, we propose residues potentially involved in GABARAP self-interaction. The possible biological significance of these observations is discussed with respect to alternative scenarios of oligomerization.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|a Funktion und Dysfunktion des Nervensystems
|c P33
|x 0
536 _ _ |0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adaptor Proteins, Signal Transducing: chemistry
650 _ 2 |2 MeSH
|a Adaptor Proteins, Signal Transducing: metabolism
650 _ 2 |2 MeSH
|a Diffusion
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Microtubule-Associated Proteins: chemistry
650 _ 2 |2 MeSH
|a Microtubule-Associated Proteins: metabolism
650 _ 2 |2 MeSH
|a Models, Molecular
650 _ 2 |2 MeSH
|a Nuclear Magnetic Resonance, Biomolecular: methods
650 _ 2 |2 MeSH
|a Protein Multimerization
650 _ 2 |2 MeSH
|a Temperature
650 _ 7 |0 0
|2 NLM Chemicals
|a Adaptor Proteins, Signal Transducing
650 _ 7 |0 0
|2 NLM Chemicals
|a GABARAP protein, human
650 _ 7 |0 0
|2 NLM Chemicals
|a Microtubule-Associated Proteins
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Diffusion-ordered spectroscopy
653 2 0 |2 Author
|a NMR spectroscopy
653 2 0 |2 Author
|a Protein oligomerization
653 2 0 |2 Author
|a GABARAP
700 1 _ |0 P:(DE-Juel1)VDB84828
|a Ma, P.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB77156
|a Thielmann, Y.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB57647
|a Hartmann, R.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)131988
|a Weiergräber, O.H.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)132012
|a Mohrlüder, J.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)132029
|a Willbold, D.
|b 6
|u FZJ
773 _ _ |0 PERI:(DE-600)2006645-4
|a 10.1007/s10858-010-9437-5
|g Vol. 48, p. 49 - 58
|p 49 - 58
|q 48<49 - 58
|t Journal of biomolecular NMR
|v 48
|x 0925-2738
|y 2010
856 7 _ |u http://dx.doi.org/10.1007/s10858-010-9437-5
909 C O |o oai:juser.fz-juelich.de:14240
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK409
|a DE-HGF
|b Gesundheit
|k P33
|l Funktion und Dysfunktion des Nervensystems
|v Funktion und Dysfunktion des Nervensystems
|x 0
913 1 _ |0 G:(DE-Juel1)FUEK505
|a DE-HGF
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 1
913 2 _ |0 G:(DE-HGF)POF3-552
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Engineering Cell Function
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g ISB
|k ISB-3
|l Strukturbiochemie
|0 I:(DE-Juel1)VDB942
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l Jülich Aachen Research Alliance - High-Performance Computing
|g JARA
|x 1
920 1 _ |0 I:(DE-Juel1)ICS-5-20110106
|k ICS-5
|l Molekulare Biophysik
|x 2
970 _ _ |a VDB:(DE-Juel1)126285
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-5-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)IBI-6-20200312
981 _ _ |a I:(DE-Juel1)ER-C-3-20170113
981 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)ICS-5-20110106
981 _ _ |a I:(DE-Juel1)VDB1346


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21