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Band convergence and linearization error correction of all-electron GW calculations:
The extreme case of zinc oxide
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Recently, Shih et al. [Phys. Rev. Lett. 105, 146401 (2010)] published a theoretical band gap for wurtzite ZnO,
calculated with the non-self-consistent GW approximation, that agreed surprisingly well with experiment while
deviating strongly from previous studies. They showed that a very large number of empty bands is necessary to
converge the gap. We reexamine the GW calculation with the full-potential linearized augmented-plane-wave
method and find that even with 3000 bands the band gap is not completely converged. A hyperbolical fit is used
to extrapolate to infinite bands. Furthermore, we eliminate the linearization error for high-lying states with local
orbitals. In fact, our calculated band gap is considerably larger than in previous studies, but somewhat smaller
than that of Shih et al..

DOI: 10.1103/PhysRevB.83.081101 PACS number(s): 71.20.Nr, 71.45.Gm, 71.15.Ap

In a recent Letter Shih et al.1 presented a new calcu-
lation for the band gap of ZnO in the wurtzite structure
employing the GW approximation2 for the electronic self-
energy. They used a conventional non-self-consistent, one-
shot approach3,4 in which neither the quasiparticle energies
nor the quasiparticle wave functions are updated. Instead,
the GW self-energy �σ (r,r′; ω) [Eq. (4)] is constructed
from the Kohn-Sham Green function taken from a density-
functional theory calculation with the local-density approxi-
mation (LDA) for the exchange-correlation energy functional.
The quasiparticle energy Eσ

nq with band index n, Bloch
vector q, and spin σ is then obtained from the nonlinear
equation

Eσ
nq = εσ

nq + 〈
ϕσ

nq

∣∣�σ
(
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nq

) − vσ
xc

∣∣ϕσ
nq

〉
(1)

with the Kohn-Sham energy εσ
nq, the wave function ϕσ

nq(r),
and the exchange-correlation potential vσ

xc(r). Off-diagonal
elements of �σ − vσ

xc are neglected.
All previous calculations5–8 invoking the one-shot LDA +

GW approach showed that the band gap of wurtzite ZnO
is underestimated with respect to the experimental value by
more than 1 eV. They fall in the range 2.12–2.6 eV while
the experimental gap amounts to 3.6 eV,9 after correction for
vibrational effects. This large underestimation is untypical for
GW calculations of sp-bound systems.

The Letter of Shih et al. addressed two issues: first, the
erroneous hybridization effects between Zn 3d and O 2p states
that results from the self-interaction error within the LDA,10

and second, the band convergence in the correlation part of the
self-energy. The first problem was tackled with the LDA + U

approach,11 in which an orbital-dependent potential corrects
the position of the 3d bands and, thus, reduces hybridization
effects with the O 2p states. However, the combination
LDA + U and GW yields a band gap that is still well below
the experimental value. Therefore, the authors investigated
the second issue by carefully converging the correlation
self-energy and the dielectric matrix with respect to the number
of bands. They performed calculations with up to 3000 bands
corresponding to a maximal band energy of 67 Ry as well as
a cutoff for the dielectric matrix of up to 80 Ry and showed

that the resulting GW band gaps, 3.4 eV for LDA + GW

and 3.6 eV for LDA + U + GW , turned out to be in very
good agreement with experiment. They also demonstrated
that a too small energy cutoff for the dielectric matrix can
lead to a false convergence behavior: the band gap seems to
converge with many fewer bands, but toward a value that is too
small.

These new results for ZnO are in striking contrast to
previous studies. If they are correct, they cast doubt on all GW

calculations published so far, not only for ZnO but also for
other materials, especially for systems with localized states.
In fact, Shih et al. point out at the end of their paper that
“many of the previous quasiparticle calculations . . . involving
localized states may need to be reexamined.” This will
likely provoke a controversial debate that reaches dif-
ferent fields of solid state physics and requests a rapid
clarification.

Since its publication the paper has aroused criticism,
mostly from the all-electron community who pointed out
that calculations with the pseudopotential approximation
cannot give a definite answer for the real GW gap because
of the neglect of the core-valence exchange effects, the
pseudized form of the valence wave functions, and the
inaccurate description of high-lying states. Therefore, they
attributed the large difference between the new result and
the previous all-electron calculations5–7 (2.12–2.44 eV) to
the approximations inherent to the pseudopotential approach
or to numerical errors in the calculation. It is, thus, vitally
important that the GW band gap of ZnO is reinvesti-
gated and thoroughly converged with a genuine all-electron
method to provide a standard for the discussion that will
follow.

In this paper, we present an all-electron LDA + GW

calculation for wurtzite ZnO that is based on the full-potential
linearized augmented-plane-wave (FLAPW) method.12 For
simplicity, we restrict ourselves to the standard LDA approach
for the noninteracting starting point without an additional
Hubbard U parameter. Our calculation yields a band gap that
is, in fact, much larger than that of the previous calculations,
but somewhat smaller than the result of Shih et al. We go
beyond their approach in two respects: we employ neither the
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pseudopotential approximation nor a plasmon-pole model for
the dielectric matrix. Instead, the screened interaction

W (r,r′; ω) = v(r,r′) +
∫ ∫

v(r,r′′)P (r′′,r′′′; ω)

×W (r′′′,r′; ω) d3r ′′d3r ′′′ (2)

is calculated explicitly within the random-phase approxima-
tion for the polarization function

P (r,r′; ω) = − i

2π

∑
σ

∫ ∞

−∞
Gσ (r,r′,ω′)

×Gσ (r′,r,ω′ − ω) dω′ , (3)

where the Green function Gσ (r,r′,ω) is constructed from
Kohn-Sham energies and wave functions. The frequency
convolution of the self-energy

�σ (r,r′; ω) = i

2π

∫ ∞

−∞
Gσ (r,r′; ω + ω′)W (r,r′; ω′)eiηω′

dω′

(4)

(η is a positive infinitesimal) is evaluated analytically for
v(r,r′) [see Eq. (2)], and with a contour integration4,13 on
the complex frequency plane for the remainder W (r,r′; ω) −
v(r,r′). The nonlinear equation (1) is solved on an energy
mesh around εσ

nq with a cubic spline interpolation between
the mesh points. Thus, no additional Taylor expansion of the
self-energy is needed. Details of the implementation can be
found in Ref. 14.

We carefully converged the number of empty bands for the
calculation of both the polarization function and the correlation
self-energy as well as the parameters for the all-electron mixed
product basis,14,15 in which we represent the dielectric matrix.
While the ground-state electron density was converged with
a standard LAPW basis with moderate cutoff parameters
(lmax = 8, Gmax = 4.3a−1

0 , where a0 is the Bohr radius), we
had to employ much larger cutoffs to generate enough wave
functions for the GW calculation: a linear momentum cutoff
of Gmax = 8.0a−1

0 and an angular momentum cutoff in the
muffin-tin (MT) spheres of lmax = 12. Furthermore, in order
to avoid linearization errors in the MT part of the LAPW
basis,16,17 we added local orbitals18,19 (LOs) with different
angular momentum quantum numbers and energy parameters
distributed over the relevant energy range: 292 LOs for Zn
(five LOs for each lm channel with l = 0–3, three for l = 4,
two for l = 5, and one for l = 6) and 186 for O (four
LOs for l = 0–3, two for l = 4, and one for l = 5). We
also treat the 3s and 3p semicore states of Zn explicitly
with LOs.

For the mixed product basis we found an angular mo-
mentum cutoff of 4 in the spheres and a suprisingly small
linear momentum cutoff of 2.4a−1

0 in the interstitial region
to be sufficient. However, we had to take into account many
product functions in the MT spheres, which after optimization
led to 177 MT functions for Zn (ten, eight, eight, seven, and
six radial functions per lm channel for l = 0–4, respectively)
and 127 for O (eight, six, six, five, and four radial functions
for l = 0–4, respectively). Obviously, the rapid variations
close to the atomic nuclei must be accurately described.
Within the all-electron mixed product basis this is possible

with a relatively modest number of MT functions, while in
a pure plane-wave approach a very large number of plane
waves is necessary to resolve the variations adequately. This
explains the finding of Shih et al. that the dielectric matrix
must be converged to very large energy cutoffs. The total
number of mixed product basis functions in the calculations
is less than 700 per k point. This number is further reduced
to around 490 by constructing linear combinations that are
continuous in value and radial derivative at the MT sphere
boundaries.20

Figure 1 shows the quasiparticle band gap of ZnO as a
function of the number of states included in the calculation
of the polarization function and the correlation self-energy.
The calculations were performed with a 4 × 4 × 4 k-point
sampling of the Brillouin zone. There is a large difference
between calculations with (pluses) and without the LOs for
unoccupied states (crosses), which shows the importance of
eliminating the linearization error of the conventional LAPW
basis. As the linearization error becomes larger for higher
and higher bands, it is not surprising that the difference
between the convergence curves grows toward increasing
numbers of bands. We find an asymptotic difference of 0.5 eV.
The calculations without LOs for unoccupied states already
converge with a few hundred bands, which could have led
the authors of the previous all-electron studies to believe that
their calculations are sufficiently converged. In fact, when the
converged value of 2.27 eV is corrected with respect to finer
k-point samplings, we arrive at 2.44 eV, which lies at the upper
edge of the range of the all-electron GW band gaps published
so far.

The linear momentum cutoff allows the interstitial part of
the LAPW basis to be converged in a systematic way. In the
MT spheres, however, the basis is linearized around predefined
energy parameters, which gives rise to the linearization error
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FIG. 1. Band convergence of the quasiparticle band gap of ZnO
employing a 4×4×4 k-point set and calculated with (pluses) and
without local orbitals (LOs) (crosses) for high-lying states. The solid
lines show the hyperbolical fits. We also indicate results with finer
k-point samplings (stars) calculated with LOs and 500 bands. The
dashed lines show the hyperbolical fit shifted to align with these
results. The fit asymptote for the 8×8×8 k-point set at 2.99 eV (dotted
line) is considered the best estimate for the all-electron one-shot GW

band gap.
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FIG. 2. Representation error 	(ε) (see text) of the set of spherical
MT functions at an oxygen atom with (solid line) and without local
orbitals (LOs) (dashed line) as a function of energy. The Fermi energy
is set to ε = 0. The “spikes” clearly identify the positions of the
energy parameters. In the case without LOs, the representation error
soon approaches unity (dotted line) for energies above 10 Ry, which
means that the basis becomes practically orthogonal to the exact
solution of the radial scalar-relativistic Dirac equation.

for high-lying states. We now analyze this error in more detail
and show that it can be eliminated very effectively with the
LOs. Figure 2 shows the representation error 	(ε) of the MT
basis at an oxygen atom for the angular momentum l = 0 as a
function of energy. We define

	(ε) =
∫ S

0
r2[R(ε,r) − Rr(ε,r)]2dr, (5)

where S is the oxygen MT sphere radius, R(ε,r) is the nor-
malized solution of the radial scalar-relativistic Dirac equation
(cf. Ref. 17) for the energy ε and the angular momentum
l = 0, and Rr(ε,r) is its best representation in terms of linear
combination of the MT functions contained in the LAPW basis.
In the conventional basis there are only two radial functions
available: the solution R(εpar,r) of the radial Dirac equation
for l = 0 at the energy parameter εpar, in this case εpar =
−1.24 Ry, and its energy derivative dR(εpar,r)/dεpar. [In the
literature these functions are commonly denoted by ul=0(r)
and u̇l=0(r), respectively.] The dashed line in Fig. 2 shows
that this conventional basis represents the occupied states
very accurately, which are located in the small energy range
−1.33 � ε � 0 Ry, but fails to describe unoccupied states at
higher energies. In fact, at energies above 10 Ry the exact so-
lution R(ε,r) becomes practically orthogonal to the MT basis,
and the representation error approaches unity. Interestingly,
at this energy, which roughly corresponds to the 500th band,
the convergence curve for the calculations without the LOs
levels off, and the band gap seemingly converges (see Fig. 1).
The description of wave functions at higher energies is con-
siderably improved, if LOs are added to the LAPW basis. The
solid line shows the corresponding representation error with
four additional LOs at 12, 24, 36, and 60 Ry. As can be seen,
the error remains below 10−3 for a very large energy range up
to 65 Ry.

As Fig. 1 shows, the calculations with eliminated lineariza-
tion error (pluses) take far more bands to converge. In fact, even
with 3000 bands the band gap is still not completely converged.
Therefore, we fitted the values with the hyperbolical function

f (N ) = a

N − N0
+ b, (6)

where a, b, and N0 are fit parameters. It is surprising how
closely the fitted curve (solid line) follows the calculated data
points. This makes us confident in taking the fit asymptote b

as the band gap extrapolated to infinite bands. Furthermore,
we have recalculated the band gap with finer k-point meshes
(up to 8 × 8 × 8) and 500 bands (crosses). The dashed lines
show correspondingly shifted hyperbolical fits. The asymptote
of the fit corresponding to an 8 × 8 × 8 k-point sampling is
found at 2.99 eV, which we take as the final best estimate for
the all-electron one-shot GW band gap.

This band gap is 0.4–0.9 eV larger than the previ-
ously reported values. Both the large number of bands that
are needed for proper convergence and the elimination of
the linearization error, which has not been undertaken in
the previous all-electron studies, are responsible for this large
difference. Our value is still about 0.4 eV smaller than the band
gap of Shih et al., though. In fact, a certain discrepancy should
be expected because of the pseudopotential approximation and
the plasmon-pole model for the dielectric function used in
Ref. 1. The pseudopotential approximation not only neglects
the important contribution of core-valence exchange. It also
yields accurate wave functions only in the vicinity of the
atomic electron energies, but not for high-lying states. This
error is very similar in spirit to the linearization error of the
LAPW basis and is also of the same magnitude.17 Thus, it
should have an impact on the GW results comparable in size
to the linearization error, whose elimination gives rise to a
sizable correction of 0.5 eV, as we have shown in the present
work.

With the LDA band gap of only 0.84 eV the quasiparticle
correction amounts to more than 2 eV. It can be expected that
a treatment beyond the one-shot approach, for example, by
taking into account off-diagonal elements of the self-energy,
by updating the Green function, or by including vertex
corrections, will further increase the value and, thus, bring it
even closer to the experimental value. As was shown in Ref. 1,
already using LDA + U instead of LDA as the mean-field
starting point, which corrects the 2p-3d hybridization, gives
an upward correction of 0.2 eV in the resulting GW band gap.

In conclusion, the band convergence is a serious issue in
GW calculations and must be thoroughly dealt with. ZnO
is an extreme case in this respect. We have reexamined
the calculation of the ZnO band gap by Shih et al.,1 and
could confirm their main result: the GW band gap of ZnO
shows a very slow convergence with respect to the number
of states used to construct the polarization function and the
correlation self-energy. Furthermore, when high-lying bands
are included in the calculation, the linearization error of
all-electron approaches becomes another important issue. As
we have shown, it can be eliminated systematically within the
FLAPW method by augmenting the basis in the MT spheres
with LOs. In the case of ZnO this procedure yields a correction
of about 0.5 eV and brings the calculated band gap (2.99 eV)
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much closer to experiment than in previous studies. We believe
that our study helps to clarify the contradiction between the
pseudopotential results of Ref. 1 and the previous results based
on all-electron approaches.5–7
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19E. Sjöstedt, L. Nordström, and D. J. Singh, Solid State Commun.

114, 15 (2000).
20M. Betzinger, C. Friedrich, S. Blügel, and A. Görling, Phys. Rev.
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