000014467 001__ 14467
000014467 005__ 20200423202944.0
000014467 0247_ $$2DOI$$a10.1103/PhysRevLett.104.057201
000014467 0247_ $$2WOS$$aWOS:000274336800045
000014467 037__ $$aPreJuSER-14467
000014467 041__ $$aeng
000014467 082__ $$a550
000014467 084__ $$2WoS$$aPhysics, Multidisciplinary
000014467 1001_ $$0P:(DE-Juel1)VDB70520$$aYan, M.$$b0$$uFZJ
000014467 245__ $$aBeating the Walker limit with massless domain walls in cylindrical nanowires
000014467 260__ $$aCollege Park, Md.$$bAPS$$c2010
000014467 300__ $$a057201
000014467 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000014467 3367_ $$2DataCite$$aOutput Types/Journal article
000014467 3367_ $$00$$2EndNote$$aJournal Article
000014467 3367_ $$2BibTeX$$aARTICLE
000014467 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000014467 3367_ $$2DRIVER$$aarticle
000014467 440_0 $$04925$$aPhysical Review Letters$$v104$$x0031-9007$$y5
000014467 500__ $$aRecord converted from VDB: 12.11.2012
000014467 520__ $$aWe present a micromagnetic study on the current-induced domain-wall motion in cylindrical Permalloy nanowires with diameters below 50 nm. The transverse domain walls forming in such thin, round wires are found to differ significantly from those known from flat nanostrips. In particular, we show that these domain walls are zero-mass micromagnetic objects. As a consequence, they display outstanding dynamic properties, most importantly the absence of a breakdown velocity generally known as the Walker limit. Our simulation data are confirmed by an analytic model which provides a detailed physical understanding. We further predict that a particular effect of the current-induced dynamics of these domain walls could be exploited to measure the nonadiabatic spin-transfer torque coefficient.
000014467 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000014467 588__ $$aDataset connected to Web of Science
000014467 650_7 $$2WoSType$$aJ
000014467 7001_ $$0P:(DE-Juel1)VDB63661$$aKakay, A.$$b1$$uFZJ
000014467 7001_ $$0P:(DE-Juel1)VDB67338$$aGliga, S.$$b2$$uFZJ
000014467 7001_ $$0P:(DE-Juel1)VDB57937$$aHertel, R.$$b3$$uFZJ
000014467 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.104.057201$$gVol. 104, p. 057201$$p057201$$q104<057201$$tPhysical review letters$$v104$$x0031-9007$$y2010
000014467 8564_ $$uhttps://juser.fz-juelich.de/record/14467/files/FZJ-14467.pdf$$yOpenAccess$$zPublished final document.
000014467 8564_ $$uhttps://juser.fz-juelich.de/record/14467/files/FZJ-14467.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000014467 8564_ $$uhttps://juser.fz-juelich.de/record/14467/files/FZJ-14467.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000014467 8564_ $$uhttps://juser.fz-juelich.de/record/14467/files/FZJ-14467.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000014467 909CO $$ooai:juser.fz-juelich.de:14467$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000014467 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000014467 9141_ $$y2010
000014467 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000014467 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000014467 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000014467 9201_ $$0I:(DE-Juel1)VDB789$$d31.12.2010$$gIFF$$kIFF-9$$lElektronische Eigenschaften$$x0
000014467 970__ $$aVDB:(DE-Juel1)126602
000014467 980__ $$aVDB
000014467 980__ $$aConvertedRecord
000014467 980__ $$ajournal
000014467 980__ $$aI:(DE-Juel1)PGI-6-20110106
000014467 980__ $$aUNRESTRICTED
000014467 980__ $$aFullTexts
000014467 9801_ $$aFullTexts
000014467 981__ $$aI:(DE-Juel1)PGI-6-20110106