001     14467
005     20200423202944.0
024 7 _ |2 DOI
|a 10.1103/PhysRevLett.104.057201
024 7 _ |2 WOS
|a WOS:000274336800045
037 _ _ |a PreJuSER-14467
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |a Yan, M.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB70520
245 _ _ |a Beating the Walker limit with massless domain walls in cylindrical nanowires
260 _ _ |a College Park, Md.
|b APS
|c 2010
300 _ _ |a 057201
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review Letters
|x 0031-9007
|0 4925
|y 5
|v 104
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We present a micromagnetic study on the current-induced domain-wall motion in cylindrical Permalloy nanowires with diameters below 50 nm. The transverse domain walls forming in such thin, round wires are found to differ significantly from those known from flat nanostrips. In particular, we show that these domain walls are zero-mass micromagnetic objects. As a consequence, they display outstanding dynamic properties, most importantly the absence of a breakdown velocity generally known as the Walker limit. Our simulation data are confirmed by an analytic model which provides a detailed physical understanding. We further predict that a particular effect of the current-induced dynamics of these domain walls could be exploited to measure the nonadiabatic spin-transfer torque coefficient.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Kakay, A.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB63661
700 1 _ |a Gliga, S.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB67338
700 1 _ |a Hertel, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB57937
773 _ _ |a 10.1103/PhysRevLett.104.057201
|g Vol. 104, p. 057201
|p 057201
|q 104<057201
|0 PERI:(DE-600)1472655-5
|t Physical review letters
|v 104
|y 2010
|x 0031-9007
856 4 _ |u https://juser.fz-juelich.de/record/14467/files/FZJ-14467.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/14467/files/FZJ-14467.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/14467/files/FZJ-14467.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/14467/files/FZJ-14467.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:14467
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
920 1 _ |k IFF-9
|l Elektronische Eigenschaften
|d 31.12.2010
|g IFF
|0 I:(DE-Juel1)VDB789
|x 0
970 _ _ |a VDB:(DE-Juel1)126602
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21