000014468 001__ 14468
000014468 005__ 20180208202715.0
000014468 0247_ $$2DOI$$a10.1109/TMAG.2010.2048016
000014468 0247_ $$2WOS$$aWOS:000278037800266
000014468 037__ $$aPreJuSER-14468
000014468 041__ $$aeng
000014468 082__ $$a620
000014468 084__ $$2WoS$$aEngineering, Electrical & Electronic
000014468 084__ $$2WoS$$aPhysics, Applied
000014468 1001_ $$0P:(DE-Juel1)VDB63661$$aKakay, A.$$b0$$uFZJ
000014468 245__ $$aSpeedup of FEM Micromagnetic Simulations With Graphical Processing Units
000014468 260__ $$aNew York, NY$$bIEEE$$c2010
000014468 300__ $$a2303 - 2306
000014468 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000014468 3367_ $$2DataCite$$aOutput Types/Journal article
000014468 3367_ $$00$$2EndNote$$aJournal Article
000014468 3367_ $$2BibTeX$$aARTICLE
000014468 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000014468 3367_ $$2DRIVER$$aarticle
000014468 440_0 $$017401$$aIEEE Transactions on Magnetics$$v46$$x0018-9464$$y6
000014468 500__ $$aRecord converted from VDB: 12.11.2012
000014468 520__ $$aWe have adapted our finite element micromagnetic simulation software to the massively parallel architecture of graphical processing units (GPUs) with double-precision floating point accuracy. Using the example of mu MAG Standard Problem #4 with different numbers of discretization points, we demonstrate the high speed performance of a single GPU compared with an OpenMP-parallelized version of the code using eight CPUs. The adaption of both the magnetostatic field calculation and the time integration of the Landau-Lifshitz-Gilbert equation routines can lead to a speedup factor of up to four. The gain in computation performance of the GPU code increases with increasing number of discretization nodes. The computation time required for high-resolution micromagnetic simulations of the magnetization dynamics in large magnetic samples can thus be reduced effectively by employing GPUs.
000014468 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000014468 588__ $$aDataset connected to Web of Science
000014468 65320 $$2Author$$aFinite element methods
000014468 65320 $$2Author$$agraphics processing units
000014468 65320 $$2Author$$amicromagnetism
000014468 650_7 $$2WoSType$$aJ
000014468 7001_ $$0P:(DE-Juel1)131033$$aWestphal, E.$$b1$$uFZJ
000014468 7001_ $$0P:(DE-Juel1)VDB57937$$aHertel, R.$$b2$$uFZJ
000014468 773__ $$0PERI:(DE-600)2025397-7$$a10.1109/TMAG.2010.2048016$$gVol. 46, p. 2303 - 2306$$p2303 - 2306$$q46<2303 - 2306$$tIEEE transactions on magnetics$$v46$$x0018-9464$$y2010
000014468 8567_ $$uhttp://dx.doi.org/10.1109/TMAG.2010.2048016
000014468 909CO $$ooai:juser.fz-juelich.de:14468$$pVDB
000014468 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000014468 9141_ $$y2010
000014468 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000014468 9201_ $$0I:(DE-Juel1)VDB789$$d31.12.2010$$gIFF$$kIFF-9$$lElektronische Eigenschaften$$x0
000014468 970__ $$aVDB:(DE-Juel1)126603
000014468 980__ $$aVDB
000014468 980__ $$aConvertedRecord
000014468 980__ $$ajournal
000014468 980__ $$aI:(DE-Juel1)PGI-6-20110106
000014468 980__ $$aUNRESTRICTED
000014468 981__ $$aI:(DE-Juel1)PGI-6-20110106