000014598 001__ 14598
000014598 005__ 20210129210607.0
000014598 0247_ $$2pmid$$apmid:16599959
000014598 0247_ $$2DOI$$a10.1007/s00450-010-0122-4
000014598 037__ $$aPreJuSER-14598
000014598 041__ $$aeng
000014598 082__ $$a004
000014598 1001_ $$0P:(DE-HGF)0$$aBaier, H.$$b0
000014598 245__ $$aQPACE: power-efficient parallel architecture based on IBM PowerXCell 8i
000014598 260__ $$aBerlin$$bSpringer$$c2010
000014598 300__ $$a
000014598 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000014598 3367_ $$2DataCite$$aOutput Types/Journal article
000014598 3367_ $$00$$2EndNote$$aJournal Article
000014598 3367_ $$2BibTeX$$aARTICLE
000014598 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000014598 3367_ $$2DRIVER$$aarticle
000014598 440_0 $$023601$$aComputer Science - Research and Development$$v25$$x1865-2034$$y3
000014598 500__ $$aRecord converted from VDB: 12.11.2012
000014598 520__ $$aDawson's burrowing bee is a large, fast-flying solitary nesting bee endemic to the arid zone of Western Australia. In this study the population structure of the species was examined with molecular markers. Using eight microsatellite loci, we genotyped 531 adult female bees collected from 13 populations of Dawson's burrowing bee, Amegilla dawsoni, across the species range. The mean number of alleles per locus ranged from 4 to 38 and expected heterozygosity was uniformly high with a mean of 0.602. Pairwise comparisons of F(ST) among all 13 populations ranged from 0.0071 to 0.0122 with only one significant estimate and an overall F(ST) of 0.001. The entire sample collection was in Hardy-Weinberg equilibrium and there was no evidence of inbreeding with a mean F(IS) of 0.010. The mating and nesting behaviour of this bee suggests that gene flow would be limited by monandry and the fact that almost 90% of females mate immediately on emergence. Nevertheless there is obviously sufficient gene flow to maintain panmixia, and we suggest that this results from infrequent and unreliable rainfall in the species range, which causes the bees to congregate at limited food resources, allowing a small number of unmated females from one emergence site to come into contact with males from another population. In addition, when drought eliminates food resources near an emergence site, the whole population may move elsewhere, increasing gene flow across the species range.
000014598 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000014598 536__ $$0G:(DE-HGF)POF2-41G21$$a41G - Supercomputer Facility (POF2-41G21)$$cPOF2-41G21$$fPOF II$$x1
000014598 588__ $$aDataset connected to Pubmed
000014598 650_2 $$2MeSH$$aAlleles
000014598 650_2 $$2MeSH$$aAnimal Migration
000014598 650_2 $$2MeSH$$aAnimals
000014598 650_2 $$2MeSH$$aAustralia
000014598 650_2 $$2MeSH$$aBees: genetics
000014598 650_2 $$2MeSH$$aFemale
000014598 650_2 $$2MeSH$$aGene Flow
000014598 650_2 $$2MeSH$$aGenetic Variation
000014598 650_2 $$2MeSH$$aGenotype
000014598 650_2 $$2MeSH$$aGeography
000014598 650_2 $$2MeSH$$aHeterozygote
000014598 650_2 $$2MeSH$$aMicrosatellite Repeats: genetics
000014598 650_2 $$2MeSH$$aNesting Behavior
000014598 650_2 $$2MeSH$$aRain
000014598 650_2 $$2MeSH$$aSexual Behavior, Animal
000014598 7001_ $$0P:(DE-HGF)0$$aBoettiger, H.$$b1
000014598 7001_ $$0P:(DE-HGF)0$$aDrochner, M.$$b2
000014598 7001_ $$0P:(DE-Juel1)132090$$aEicker, N.$$b3$$uFZJ
000014598 7001_ $$0P:(DE-HGF)0$$aFischer, U.$$b4
000014598 7001_ $$0P:(DE-HGF)0$$aFodor, Z.$$b5
000014598 7001_ $$0P:(DE-HGF)0$$aFrommer, A.$$b6
000014598 7001_ $$0P:(DE-HGF)0$$aGomez, C.$$b7
000014598 7001_ $$0P:(DE-HGF)0$$aGoldrian, G.$$b8
000014598 7001_ $$0P:(DE-HGF)0$$aHeybrock, S.$$b9
000014598 7001_ $$0P:(DE-HGF)0$$aHierl, D.$$b10
000014598 7001_ $$0P:(DE-HGF)0$$aHüsken, M.$$b11
000014598 7001_ $$0P:(DE-HGF)0$$aHuth, T.$$b12
000014598 7001_ $$0P:(DE-HGF)0$$aKrill, B.$$b13
000014598 7001_ $$0P:(DE-HGF)0$$aLauritsen, J.$$b14
000014598 7001_ $$0P:(DE-Juel1)132179$$aLippert, T.$$b15$$uFZJ
000014598 7001_ $$0P:(DE-HGF)0$$aMaurer, T.$$b16
000014598 7001_ $$0P:(DE-HGF)0$$aMendl, B.$$b17
000014598 7001_ $$0P:(DE-HGF)0$$aMeyer, N.$$b18
000014598 7001_ $$0P:(DE-HGF)0$$aNobile, A.$$b19
000014598 7001_ $$0P:(DE-HGF)0$$aOuda, I.$$b20
000014598 7001_ $$0P:(DE-HGF)0$$aPivanti, M.$$b21
000014598 7001_ $$0P:(DE-HGF)0$$aPleiter, D.$$b22
000014598 7001_ $$0P:(DE-HGF)0$$aRies, M.$$b23
000014598 7001_ $$0P:(DE-HGF)0$$aSchäfer, A.$$b24
000014598 7001_ $$0P:(DE-HGF)0$$aSchick, H.$$b25
000014598 7001_ $$0P:(DE-HGF)0$$aSchifano, F.$$b26
000014598 7001_ $$0P:(DE-HGF)0$$aSimma, H.$$b27
000014598 7001_ $$0P:(DE-HGF)0$$aSolbrig, S.$$b28
000014598 7001_ $$0P:(DE-HGF)0$$aStreuer, T.$$b29
000014598 7001_ $$0P:(DE-HGF)0$$aSulanke, K.-H.$$b30
000014598 7001_ $$0P:(DE-HGF)0$$aTripiccione, R.$$b31
000014598 7001_ $$0P:(DE-HGF)0$$aVogt, J.-S.$$b32
000014598 7001_ $$0P:(DE-HGF)0$$aWettig, T.$$b33
000014598 7001_ $$0P:(DE-HGF)0$$aWinter, F.$$b34
000014598 773__ $$0PERI:(DE-600)2410154-0$$a10.1007/s00450-010-0122-4$$gVol. 25$$q25$$tComputer science - research and development$$v25$$x1865-2034$$y2010
000014598 8567_ $$uhttp://dx.doi.org/10.1007/s00450-010-0122-4
000014598 909CO $$ooai:juser.fz-juelich.de:14598$$pVDB
000014598 9131_ $$0G:(DE-HGF)POF2-41G21$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vSupercomputer Facility$$x1
000014598 9141_ $$y2010
000014598 915__ $$0StatID:(DE-HGF)0020$$aNo peer review
000014598 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000014598 970__ $$aVDB:(DE-Juel1)126850
000014598 980__ $$aVDB
000014598 980__ $$aConvertedRecord
000014598 980__ $$ajournal
000014598 980__ $$aI:(DE-Juel1)JSC-20090406
000014598 980__ $$aUNRESTRICTED