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The basic micromagnetic models of Landau, Lifshitz, and Dzyaloshinskii, have been extended by
an anisotropy term with two independent parameters. The resulting ground states of the magnetic
domains and the domain-wall profiles are discussed for crystal lattices with orthorhombic unit cells.

In these simple geometries, the magnetization is not confined to a single plane.

Depending on

the relations between the spin-stiffness, anisotropy, and Dzyaloshinskii-Moriya interaction several
different zero-temperature phases of the magnetic structure were found. The corresponding phase
diagrams are obtained numerically. Analytical results are given for some special cases. The studied
model is of particular relevance for magnetic wires, nanostripes and ultrathin magnetic films

deposited on non-magnetic surfaces.
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I. INTRODUCTION

In a classical model, magnetic moments can be con-
sidered as vector quantities, residing on atomic sites. In
ferro- or antiferromagnets they are oriented parallel or
antiparallel, respectively, depending on the exchange in-
teraction. The moments point along an easy axis, relative
to the crystal axis or the shape of the sample. Typically
such a magnet is not in a single domain state, but splits
up into a multidomain state, where domains are sepa-
rated by domain walls. The mesoscale structures and
the properties of the domains and domain walls play a
crucial role in magnetism as the domain-wall nucleation,
propagation and annihilation are the driving mechanisms
in magnetization reversal in response to an external mag-
netic field.

Textbook examples of such mesoscale structures are
ferromagnetic domains separated by Bloch or Néel walls.
Within in a Bloch wall, the magnetization rotates like
a helical spiral in the plane parallel to the wall normal,
while within the Néel wall the magnetization rotates like
a cycloidal spiral in a plane perpendicular to the wall
normal. Already in 1932 Bloch! pointed out that the
wall structure is determined by the competition between
the exchange and anisotropy energies and the exact inter-
nal structure of the Bloch wall has been calculated first
by Landau and Lifshitz.2 Néel® has shown that an addi-
tional dipolar interaction can lead to a new type of wall,
carrying his name. In fact in realistic systems there are
further effects that may become important. For example
in sufficiently thick magnetic samples, the influence of
the long-ranged magnetostatic interactions can lead to a
variety of complex domain-wall structures (cf. Ref. 4).

In recent years the investigation of the magnetic struc-
ture in nanomagnets moved into the focus of intensive re-

search. This interest is in part motivated by the prospect
of using nanomagnets in novel magnetic memory or logic
devices®®. Their construction requires a profound un-
derstanding of the magnetic structure, energy and prop-
erties of domains and walls. Interest is also stimulated by
new experimental techniques such as the spin-polarized
scanning tunneling microscope (SP-STM) and magnetic
force microscopy (MFM) which provide new insight to
the magnetic structure in on the atomic scale!® 13,

Compared to bulk systems, in nanomagnets several
factors may alter the energetics or the magnetic struc-
ture. The long-ranged nature of the magnetostatic in-
teractions plays a crucial role in the formation of most
of the studied domain patterns. In low-dimensional or
very small samples, however, it is of minor importance.
Also the material parameters that determine the short-
ranged interactions change, if the spatial dimensions are
reduced by surfaces and interfaces.'*17 This paper ad-
dresses an aspect typical for nanomagnets, that attracted
a lot of attention in the last years: For a magnetic sys-
tem the lack of space inversion symmetry together with
the presence of the spin-orbit interaction gives rise to
the Dzyaloshinskii-Moriya (DM) interaction'®19. This
interaction is antisymmetric with respect to the rota-
tional direction, i.e. it favors spatially rotating mag-
netic structures of a certain handedness. This interac-
tion can always be expected at surfaces?®, and resulting
spatially rotating magnetic structures have recently been
observed in ultrathin films2!22 and proposed for other
low-dimensional systems (cf. e.g. Refs. 237 -25). Even
in cases where the DM interaction is not strong enough
to induce a rotating ground state, it have a significant
influence on the energetics of the domain walls and thus
influence the entire domain structure.?%

Dzyaloshinskii?” was the first to study the consequence



of this interaction for the mesoscale magnetic structure.
He applied a micromagnetic model in which the mag-
netization can vary along one spatial direction, z, and
is described by a single angle p(z). He showed that
the DM interaction may generate periodically modulated
magnetic structures. There are many possible ways to
extend Dzyaloshinskii’s basic model by including higher-
order exchange or anisotropy terms. If one considers
more than one spatial dimension and allows for cer-
tain higher-order interactions or an external magnetic
field, the model can support more complex structures
like vortices and skyrmions, and the understanding of
these magnetic structures increased significantly in re-
cent yezabl“s.28’32

In this paper we do not allow for higher-order terms
or more than one spatial dimension, but extend the
micromagnetic model by allowing for two independent
anisotropy terms as they appear in orthorhombic crystal
structures or rectangular unit cells at a surface. The re-
sulting micromagnetic ground state is investigated the-
oretically. Thereby, we find a variety of distinct mag-
netic phases and discuss the occurrence of these phases
with respect to the values of the spin stiffness, magnetic
anisotropy and DM interaction. For certain choices of
the model parameters the ground-state magnetization
is not confined to a plane but varies on a truly three-
dimensional path in spin space. Besides the ground state
in the domains, we discuss the domain walls. They can
be strongly altered by the interplay of DM interaction
and magnetocrystalline anisotropy, even if the domain
magnetization is collinear.

Our model aims at ultrathin magnetic films and chains
deposited on non-magnetic substrates, but holds also for
other nanostructures and bulk crystals which lack cen-
trosymmetry and for which the long-ranged nature of
the magnetostatic interaction can be neglected (e.g. an-
tiferromagnets). The equations are worked out in detail
for orthorhombic unit cells, which include for example
(110) oriented thin films or surfaces of cubic crystals and
clusters deposited on appropriate substrates.

In section IT we introduce the studied micromagnetic
model and briefly discuss its applicability. In section III
the possible magnetic structures of this model are in-
vestigated numerically. The dependence of the magnetic
structure on the model parameters is investigated and the
resulting phase diagrams are presented. For some cases
there are simple analytical solutions, these are presented
in section IV.

II. MODEL

We restrict our analysis to a simple micromagnetic
model, i.e. we describe the magnetization in terms of a
continuum theory. The magnetization direction is de-
scribed by a continuous normalized function m(z) that
varies only along one spatial coordinate x over length
scales significantly larger than the crystal lattice con-

stant. If we want to describe locally antiferromagnetic
structures, we assume that the atoms’ magnetic moments
are aligned alternately parallel and antiparallel to m.

In the studied model, the energy is approximated by
the functional

E[m] :/dx{A<((li—r;>2+D -(m x %‘) +1c(m)} (1)

with |m(z)| = 1. The integrand is a one-dimensional en-
ergy density. It is a local function of m and dm/dz. It
contains the leading symmetric and antisymmetric terms
in dm/dz as well as an anisotropy term. The first term
accounts for the spin stiffness A. It is dominated by
non-relativistic exchange interactions. The second term
represents the DM interaction with the Dzyaloshinskii
vector D. Tt is of purely relativistic origin (i.e. due to
spin-orbit coupling). The last term, X, is a function that
depends only on m. It describes the anisotropy of the
system and is due to the spin-orbit coupling and to mag-
netostatic interactions. The first term favors a collinear
spin alignment (i.e. m(z) = const), it is isotropic in spin
space and symmetric with respect to the direction of the
spin rotations (i.e. with respect to sign(dm/dz)). The
third term favors a certain magnetization direction and
thus also supports a collinear spin alignment. The sec-
ond term, however, favors non-collinear structures with
m spatially rotating in the plane normal to the D-vector.
Thus, it competes both with the first and the third term.
The DM interaction does not influence the energy of spin
rotations in a plane parallel to D, but for rotations in the
plane normal to D it distinguishes between the two ro-
tational directions.

A. Assumptions and applicability

First, we discuss the main assumptions that enter our
ansatz (1):

The restriction to one spatial coordinate x a priori
excludes more-dimensional magnetic structures like the
recently discussed vortex or skyrmion type magnetic
structures.?®31:32 This does not present a problem if we
want to describe magnetic chains or nanostripes, or ma-
terials with a sufficiently anisotropic spin stiffness, and
the assumption is expected to be reasonable for the dis-
cussion of simple domain walls between ferromagnetic do-
mains. In Ref. 29 the functional (1) is generalized to two
spatial coordinates in order to describe extended films,
but restricted to uniaxial anisotropy. For that case it is
shown that the ground-state magnetization in absence of
a magnetic field varies only along one spatial direction.
It remains to be investigated if this result still holds for
systems where A, D, K are anisotropic with respect to the
spatial coordinates.

The applicability of a continuous model implies that
m(z) varies on length scales that are large compared
to the lattice spacing. As the energy density is a lo-
cal function of m and dm/dz, we assume that m(z)



is sufficiently constant over the range of the dominat-
ing magnetic interactions. This assumption might not
hold, if the magnetic structure is influenced either by
long-ranged RKKY interactions or by long-ranged mag-
netostatic (dipole-dipole) interactions. The former inter-
action plays and significant role in diluted magnetic sys-
tems, the latter one plays an important role in bulk ma-
terial and thick magnetic films. In the case of atomically
thin films and other magnetic nanostructures, however,
the corresponding magnetic fields are relatively weak and
only the dipole-dipole interactions between neighboring
atoms can have a significant influence on the local mag-
netic structure. This influence can be modeled with the
local anisotropy term lC(m).33 In typical magnets the
non-relativistic exchange interactions are the largest en-
ergy contributions to Eq. (1) and determine the magnetic
structure on the atomic scale. If they favor a collinear
magnetic phase (with m(z) = const), we expect them to
be strong enough to prevent any short-ranged modula-
tions of the magnetic structure. In this case, we can work
with the leading terms in m and dm/dz and summarize
all symmetric and antisymmetric exchange interactions
in the spin stiffness A and the Dzyaloshinskii vector D .

The model should be useful for the description of atom-
ically thin magnetic films, stripes, and wires deposited
on non-magnetic substrates: Besides the possibility to
approximate the magnetostatic dipole-dipole interaction
by the local anisotropy term, all magnetic atoms in these
systems are exposed to a strongly inversion-asymmetric
environment. Thus one can expect a relatively large DM
interaction, in which case our study can become relevant.

B. Model parameters

In this paper, we neglect external magnetic fields, and
we restrict our investigations to crystal structures with
mutually orthogonal lattice vectors and an anisotropy
term that can be approximated by the diagonal tensor K:

Ki 0 0
Km)=m'Km with K=| 0 K, 0 (2)
0 0 Kp

whereby m is represented in a Cartesian coordinate sys-
tem.

In many cases, the direction of the D-vector can be
deduced directly from symmetry. For example if the z-
direction of varying magnetization m(z) lies in a mirror
plane of the crystal, the we have to consider a Dzyaloshin-
skii vector normal to this mirror plane. In the following,
we assume that the Dzyaloshinskii vector D points along
a high-symmetry line of the crystal and choose

D=Dé. (3)

(In ultrathin films, D typically is parallel to the film
plane. In such cases é3 is orthogonal to the usually cho-
sen z-axis.)

FIG. 1: Orientation of the Cartesian coordinate system and
definition of the polar angles ¥, p. és is chosen parallel to the
D-vector.

In the following, we describe the magnetization m with
the (z-dependent) polar angles ¢ and ¢ (cf. Fig. 1):

m = sint cos &; + sin® sinp &3 + cos v &3 . (4)

The model as given by Eqgs. (1-2) can be described with
two reduced parameters instead of A, D, and K. Intro-
ducing

D Kp — K,

Di=—u— ) —
1 ) I KQ—K17

A(K,; — K) )

we can simplify the following calculations by scaling the
length and energy by

T FE
" A/(K,—Ky) EI_\/A(K2—K1)7 ©

i.e. we express ¢ and E in terms of the width 2 /A/K

and energy 41+ A K of a domain wall that is confined to
a plane parallel to é3 (cf. Ref. 2). Inserting Egs. (4-6) in
the energy functional (1) yields

E:ﬁ@@%ﬂﬁwﬁ+m¢

+sin’p — K7) + const} }

(7)

Hereby, we used the notations

0 =9(xm), p=p@), =5 9), ¢ =55 o) .
In order to access the case Ky < K as well, we introduce

as a second set of reduced parameters

D K, — Kp
D = — K = —_—
11 ) 11 K2 — KD )

A(K; — Kp) ®)

and the appendant scaled length and energy
T E

W R, k) | Y AL, Ky

For vanishing D, the last denominators correspond to the
width and energy of a wall that is confined to the plane
normal to és. Inserting (8-9) in (1) yields

9)

EH::jﬂhh[ﬁ2+—$n2ﬂ(¢2—klh1¢ (10)
10
+sin?p + K7y COSQQD) + const| ,



where we used the notations
U =9(xn), = (), V= S.TH V1), o= S.TH o(an) -

In the following, we switch between (D;, Kj) and
(D1, K1) in order to keep the formulas simple.

The magnetic ground state is given by the functions
J(x) and ¢(x) that minimize F; and Ejyp respectively. In
order to study domain walls, we introduce boundary con-
ditions for £ — +oo. If the domains are homogeneously
collinear magnetized, a wall between two oppositely mag-
netized domains is determined by the minimal solution
of Eq. (7) or Eq. (10) under the boundary condition

m(z) “Z5° tmeay (11)

where mg,s, denotes the magnetization direction parallel
to the easy axis.

III. MAGNETIZATION SHAPES AND PHASE
TRANSITIONS

In this section we discuss the solutions that minimize
the energy functionals (7,10). If the Dzyaloshinskii vec-
tor points parallel to the hard axis (i.e. K1, K> < Kp),
then all terms in the functional (1) favor a magnetiza-
tion that stays in the plane normal to D (i.e. ¥ = 7/2,
9 =0). In this case, m(x) can be described by a single
angle ¢ and the corresponding magnetic structures are
elaborately discussed in literature.?”:34

A. DMagnetic ground state in the domains

In the next paragraphs we seek the ground state of
(7,10) without any constraints or boundary conditions
for |x| — oo, thus we are not requesting a particular
domain structure.

At first, we assume that the Dzyaloshinskii vector
points parallel to the hard axis. As mentioned above,
this implies ¢ = w/2. Without loss of generality, we can
assume that Ky < Ky < Kp and Eq. (7) yields (after
neglecting any constant term in the integrand):

— /dxl (¢* + D1 ¢ +sin®p) . (12)

The ground state of Eq. (12) is already discussed by
Dzyaloshinskii, we will briefly state his results. For fur-
ther details and analytical derivations confer Refs. 27,34.
If we neglect the anisotropy term sin® ¢, we obtain spin
rotations for all non-vanishing D;. But, for small Dy
the DM term cannot compete with the sum 2 4 sin® ¢
and the energy is minimized by a collinear magnetization
that is oriented along the easy axis (i.e. ¢(z) =0). The
model (12) shows a spatially rotating magnetization as
the ground state, if and only if

4
D1 >~ (13)

In the following, we denote the period length of a spa-
tially rotating ground state with A. In the case of
model (12), A diverges for [Dy| \, 2. This transition can
be interpreted as a second-order phase transition with
order parameter 1/ and a kink in dFy/dDy. If the mag-
netization rotates, then the sign of ¢ is opposite to the
sign of Dy.

Next, we discuss the case that the Dzyaloshinskii vec-
tor does not point parallel to the hard axis. We assume
Kp < Ky and K1 < Ky (= Kip < 1). In this case,
the angle ¢ is determined by a competition between the
DM and the anisotropy terms: The energy gain from
sind Dy ¢ is maximal for ¥ = 7/2, but in this case a full
rotation (=0 — p=+27) does not avoid m parallel to
the hard axis. In the most simple case, D points parallel
to the easy axis the anisotropy in the plane normal to the
Dzyaloshinskii vector can be neglected (K; = Ko > Kp,
K11 =1). Then Eq. (10) simplifies to

EH‘ = /dgcII [192 +sin®9 (¢* + Dy + 1) } - (14)

1=

Obviously, this functional is isotropic in ¢ and minimized
by ¢ = const, ¥ = const. If | Dyj| is small, then the term
(p? + D¢ + 1) is positive for all ¢ and (14) is mini-
mal for the collinear solution sin®9 = 0. If | Dyy| is suffi-
ciently large (i.e. |Dyr| > 2, cf. section IV A), then the DM
term can compete with the spin stiffness and anisotropy
terms (ie. 2+ D+ 1 < 0) and (14) is minimal for
sin?9 = 1. Thus, for increasing | Dyy| the system under-
goes a first-order transition from the collinear state to
a flat noncollinear state that is spatially rotating in the
plane normal to the easy axis.

The situation is less concise, if the plane normal to
the Dzyaloshinskii vector is not isotropic. In this case,
the competition between the DM and the anisotropy
term can result in another rotating phase where the an-
gle ¥ is not constant but depends on ¢. Then, the
ground-state magnetization m(z) describes a truly three-
dimensional path in spin space (cf. Fig. 2). We investi-
gated Eq. (10) numerically in order to locate the differ-
ent magnetic ground states in the (D, K1r)-space. The
resulting phase diagram is shown in Fig. 3. In this di-
agram, the region of the three-dimensional magnetiza-
tion is bounded by two critical lines where m under-
goes second-order phase transitions (i.e., if a path in the
(D1, K11)-space is defined by the smooth functions Dy (p)
and K7i1(p) then d Eyr/d p is continuous but not smooth at
a critical line). Thus, if D points parallel to the easy axis
(0 < Ki1 # 1) then the magnetization can vary continu-
ously from a collinear state parallel to the easy axis to a
flat rotating state. Note, that in this case the spatial pe-
riod length does not diverge in the vicinity of the collinear
ground state. A continuous transition from a collinear
state to a rotating state of finite period length is possible
only if D points parallel to the easy axis, since the rotat-
ing structures gain energy from the rotation around the
Dzyaloshinskii vector (cf. section IV A). In section IV A
it is shown, that the critical line that is bordering the



FIG. 2: Noncollinear magnetization in the domains. The ar-
rows represent the magnetization m that is defined by ¥(z)
and ¢(z). In the top image (NC L D) the magnetization is
confined to the plane normal to D, whereas in the bottom im-
age (3dim) it describes a truly three-dimensional path in spin
space. In this case there is ¥ # const, since m tries to avoid
the hard axis. The images are calculated with K1 = —0.04,
and Di; = 1.38 (NCLD) and Dy = 1.30 (3dim) respectively.

collinear state (line a-c in Fig. 3a) is defined by
Kiy=D4—2|Dy|+1 for |Dy|>1  (15)
or, equivalently,

Dt —-2D?+1
K7 :,¥ for

D 1. 1

Not shown in Fig. 3 are the equivalent phases of oppo-
site chirality, that we obtain for D < 0 (remember, that
signgp = —sign D). By our choice of reduced parame-
ters (Egs. (5-8)) we cannot describe the collinear phase
with m = &5, but this phase is equivalent to the collinear
phase with m = é;.

Before turning our attention to the domain walls, we
note that oppositely magnetized domains can exist in the
regimes of collinear or truly three-dimensional domain
magnetizations. In the latter case, signmg is constant
for the entire domain since in that regime 9 # 7/2 (cf.
Fig. 2). Therefore, in one domain 0 < ¢ < 7/2, while
in the other domain 7/2 < ¥ < m. In the regime of flat
rotations, the possible magnetic structures differ only by
a phase shift.

B. Domain walls

In this section we discuss the the domain-wall shapes
and energies. For vanishing D the magnetization m(z)
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FIG. 3: Phase diagram of the domain magnetization. For
D > 0, the diagram shows four distinct phases, namely the
collinear phases with m pointing parallel to the easy axis and
parallel or perpendicular to the Dzyaloshinskii vector (Col || D
or Col L D), the noncollinear phase with ¥(x) = § = const
(NC L D), and the noncollinear phase with m(x) describing
a truly three-dimensional path in spin space (3dim). The
solid lines denote first-order and the dashed lines second-order
transitions. At point ¢ (D = 0, K11 = 1) the dashed lines
touch, at this point the system shows a sharp transition from
Col||D to NC L D. Dy and Kj diverge at point ¢, whereas
a (D1 =1, K1 =0) and b (D1 = 2) correspond to the same
sets of parameters A, D,K both in Figs. (a) and (b).

in the domain wall describes a path that minimizes the
anisotropy energy, thus m(z) is confined to the plane
perpendicular to the hard axis. In this case we can as-
sume Ky < Ky < Kp and work with the functional and
boundary conditions

B = /de (2% +sin%p) , @ 25T gig . (7)
This model has the well known solution?
o(2;) = £ arccos tanh(—2a;) . (18)

If the Dzyaloshinskii vector is nonvanishing and parallel
to the hard axis (i.e. if K1 > 1), we employ Eq. (12).
With the boundary conditions as stated in Eq. (17), we
obtain [dz; ¢ = (sign¢) m and the energy functional sim-
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FIG. 4: Phase diagram of the domain walls. The thin lines
separate the different phases of the domain magnetization,
they are already described in Fig. 3b. The bold lines indicate
the additional phase transitions of the domain walls. For large
K the magnetization is confined to the plane normal to the
Dzyaloshinskii vector (DW L D). The solid line starting at
p (D1 = 0, K1 = 1) indicates a first-order transition where the
rotational direction changes (since sign¢ = —sign Dr). The
dashed line from p to b indicates the continuous transition
from the flat to the truly three-dimensional domain walls (cf.
Fig. 5). For K1 < 0, the collinear domains are oriented par-
allel to D and we can obtain domain walls as illustrated in

Fig. 6. In the regime with ¥(z) = 7 = const (NC_L D) there

are no domains of distinct magnetization directions.

plifies to
Er = /dxl (¢* +sin’p) £ 7 Dy . (19)

Thus, for D parallel to the hard axis, the optimal domain-
wall shape does not depend on |Dy| and is still given by
Eq. (18). Only the sign of the right-hand side of (18)
depends on the sign of Dj.

If the Dzyaloshinskii vector does not point parallel to
the hard axis (i.e. if K1 < 1), we work with Eqgs. (7)
and (10) again. In the regime of a three-dimensional
domain magnetization, we have to replace the boundary
conditions (11) by

0 <9(+x)

r>1 =
{ 5 <9(—x)

<
. (20)
<

But even if the individual domains are collinear, the com-
petition of the DM and the anisotropy term can result in
a truly three-dimensional domain wall structure. If the
Dzyaloshinskii vector points parallel to the intermediate
axis (i.e. 0 < K1 < 1), we find a continuous transition
from a wall that is confined to the plane normal to the
hard axis (at vanishing D) to a wall that is confined to
the plane normal to the D-vector (as favored by the DM
term). Only for D = 0 the domain-wall magnetization is
exactly perpendicular to the hard axis, but for all |D| be-
yond a certain critical value it is exactly perpendicular to
the Dzyaloshinskii vector. The resulting phase diagram

FIG. 5: Rotation paths of m(z) in the walls between collinear
domains, the D-vector is perpendicular to the easy axis (i.e.
K1 > 0). The inset shows the polar angles for K1 = 0.5 and
Dr as specified in the legend. (a): For Dy =0and 0 < K1 < 1
there are two degenerate rotation paths in the plane normal
to the hard axis (cf. inset, D; = 0). (b): For small D; > 0 and
0 < K1 < 1 the competition between the anisotropy term and
the DM term results in a three-dimensional rotation path in
spin space. There are still two degenerate solutions (cf. inset,
D1 = 0.3). (c): For larger D or K1 > 1 the magnetization is
confined to the plane normal to D. In this case, there is only
one solution: the continuations of both configurations in (b)
coincide in the regime of m L D (cf. inset, D; = 0.8).



FIG. 6: Rotation path of m(z) in the walls between collinear
domains, the D-vector is parallel to the easy axis (i.e. K1 <
0). For K11 = 1 the magnetization describes a homogeneous
rotation (¢ = const) around the Dzyaloshinskii vector. The
inset shows more complex structures that arise if the plane
normal to D is not isotropic, these polar angles are calculated
with K11 = 0.25 and Drr as specified in the legend. Note,
that the transition from collinear to three-dimensional domain
magnetization occurs at Dip = 1 + VK1 = 1.5. Not shown
are the degenerate solutions with ¢ shifted by .

is given in Fig. 4. For vanishing D there are two energet-
ically degenerate solutions of opposite rotational direc-
tion. The corresponding rotation axis is the hard axis.
For D perpendicular to the hard axis (K7 < 1), this de-
generacy is not lifted in the regime of three-dimensional
wall structures. For increasing |D| the two degenerate
magnetization paths deform continuously and coincide
at the critical line (line p-b in Fig. 4). The magnetic
structures are illustrated in Fig. 5. If the Dzyaloshin-
skii vector points parallel to the easy axis (i.e. K1 < 0,
Ky > 0), the magnetization path can show more than
a half rotation around the Dzyaloshinskii vector: ¢ de-
creases steadily while ¥ asymptotically converges to 0.
Such magnetic structures are illustrated in Fig. 6.

In Fig. 7 we show the influence of the DM term on
the wall energies. Thereby, we choose the constant terms
in the integrands of Egs. (7,10) such that the domain
magnetization does not contribute to the energy. If the
magnetization is confined to the plane normal to the D-
vector, we can insert the expression (18) in Eq. (19) and

obtain?
Ey=4—n|Dy| & E=4+/A(Ky— K;)—7|D]|. (21)

If the magnetization is confined to a plane that includes

0
0 D,

i 4/I717
| D | D

FIG. 7: Domain wall energies. Fig. a: The thick solid line
represents the domain wall energies for fixed K1 = 0.5. D
denotes Dr on the critical line (line p-b in Fig. 4). For D. <
|Di| < 2 the magnetization is confined to the plane normal
to the Dzyaloshinskii vector and the wall energy is given by
4 — 7 |Dy|. For |Di|] < D. the wall can reduce energy by
deviating from the plane normal to the Dzyaloshinskii vector
and for decreasing |Di| the magnetic structure continuously
transforms into a wall that is confined to the plane normal
to the hard axis and has the energy 4 +/K;. The dashed line
indicates the wall energy for K1 > 1, i.e. for D parallel to the
hard axis. Fig. b: The curve shows the domain wall energy for
the Dzyaloshinskii vector parallel to the easy axis. Thereby,
we assume no anisotropy in the plane normal to D.

D, we obtain (for m L é; and Kp > K;)

Ei=4VEK & E=4\/A(Kp-K). (22)

Eq. (21) is consistent with the condition (13), as it implies
a noncollinear domain magnetization for |Dy| > 4/7.

C. Remarks concerning the numerical procedure

When minimizing the energy functionals (7,10), the
magnetization m(z) is calculated on a real-space grid.
In order to investigate the noncollinear domain magne-
tization, we employ periodic boundary conditions. We
have to determine the optimal period length A (i.e. A
with minimal energy density Er;/A) for each point in the
(D1, K1)-space. For each Kjr-value, we start at large
D1 with the analytically known A of the flat spirals and
follow the local optimum of A when decreasing Di; in
small steps. This procedure reveals the existence of a
three-dimensional structure that has lower energy than
the collinear structures and flat spirals. But we cannot
rule out more complex three-dimensional structures of
even lower energy, that do not match with our choice of
periodic boundary conditions.

The second-order phase transitions are detected by
identifying the kinks in the dLDI Ei(Dy)-curves at fixed

K7 and in the dLDH Eq1(Dyy) -curves at fixed Kip, respec-
tively. The derivatives are calculated from the difference
quotients after minimizing the energy on a dense D-grid.

A detailed description of the numerical procedure is
given in Ref. 35.



IV. ANALYTICALLY SOLVABLE CASES

For the case that the magnetization is confined to the
plane normal to the Dzyaloshinskii vector, we refer to the
analytical solution given by Dzyaloshinskii in Ref. 27 and
the detailed review in Ref. 34.

A. Conditions for a collinear domain magnetization

In this section, we present some analytical results con-
cerning the transition between collinear and noncollinear
domain magnetization. We start with the case that D
points parallel to the easy axis. Then, we discuss the
case that D is perpendicular to the easy axis.

1. Dzyaloshinskii vector parallel to the easy axis

If the Dzyaloshinskii vector points parallel to the easy
axis, there is a continuous transition from a collinear to
a noncollinear domain magnetization (cf. Fig. 3). In the
following it is shown, that the corresponding critical line
is given by Eq. (15).

In Cartesian coordinates {m;} = {&; - m}, the func-
tional (10) reads

EHZ/d%[m%-f—m%—&-m%-i-ffnm%-i-m%

(23)

+Dry (my 1hg — ity mo) |
and the condition m? +m3 +m3 = 1 reduces the degrees
of freedom. We want to discuss the magnetization in the
vicinity of the collinear state with m = é3 || D. In this
regime we can neglect m% against 1m? + m32, since mg
is stationary at m = €3. With this approximation, we
obtain the Euler-Lagrange equations

2Kimi+2Dpme —2m; = 0, (24)
2ms — 2 Dy — 27 = 0. (25)

The existence of a noncollinear state that is restricted
to m = €3 implies a non-trivial bounded solution of the
Egs. (24-25) (the trivial solution m; = mg = 0 corre-
sponds to the collinear state). In the following we derive
a criteria for the existence of bounded solutions. Using
(24) to express Mg by mq, 7y and inserting this into the
derivative of (25) leads to the 4th-order linear differential
equation

Knumqg + (DI21 —1- KH) mi1 + m1 =0. (26)

The real and bounded solutions of (26) are restricted
to linear combinations of { cos(w 2;;) , sin(w 21;) }w , where
w = —iv is given by the purely imaginary roots of the
characteristic polynomial

P(I/):V4+(DI21*17KH>V2+KH:0. (27)

With the substitution 4 = v? we need to derive the con-
ditions for negative real roots of the polynomial

P(p)=p?>+ D}y —1-Kn)p+Kn=0.  (28)
The last equation can be rewritten as
(2p+ Dy —1—Ky) = (D —1—Kn)? —4 Ky, (29)
thus p is real if and only if
(Dfi —1—Kn)?>4Kn = (2VKu)®? =
{ D% > (1+ VKn)? it D% > 1+ Ky
D% < (1—-+/Ku)* if D <1+ Kn

(in the last formulas we used that Ky > 0 for D par-
allel to the easy axis, and we employed the relation
+2/Ki = (1£+vKj1)? —1— Ky ). The next step is to
check the sign of p. With C = D — 1 — K1, Eq. (28)
yields

(30)

2/J, = —C:E\/Cz—élKH
= —(signC)VC? + /C? — 4 Ky, (31)

provided that p is real. From the last equation it is ob-
vious, that

signp = —sign(DF — 1 — Kyy)  if p real. (32)

Combining Egs. (30) and (32), we conclude that the
energy functional (10) is not minimized by a any non-
collinear magnetization with m = é;||D if

|DH| <14++Ki1, (33)

thus we obtain Eq. (15). In order to confirm that our
noncollinear solution indeed yields a lower energy than
the trivial collinear solution, we have to insert a linear
combination of { cos(y/—p au), sin(y/—p an) b, (with {u}
given by Eq. (31) ) in the energy functional. This lengthy
calculation is omitted here, but numerical calculations
show that the noncollinear state emerging at |Dyr| > 1+
VK11 is energetically favorable.

We note, that the Eqgs. (24-25) determine the optimal
ratio, but not the prefactor of mj(z) and ms(x). How-
ever, the numerical investigation (that does not neglect
the term 73 in Eq. (23) ) shows a continuous transition
at ‘DH| :1+m.

A special situation arises if there is no anisotropy in
the plane normal to the Dzyaloshinskii vector (i.e. Ky =
1). In this case, the ground state undergoes a first-order
transition from a collinear state to a flat rotating spiral
when |Dyp| increases (point ¢ in Fig. 3a). As already
mentioned in section IIT A, for K11 = 1 the functional (10)
reduces to (14) and the phase transition occurs at

¢’ +Dup+1=0. (34)

For ¢ = const the right-hand side of Eq. (34) is mini-
mized by ¢ = f%. Inserting this in (34) yields

|Dii|=2. (35)

Of course, this result is just a special case of the condi-
tion (33).



2. Dzyaloshinskii vector perpendicular to the easy axis

If the Dzyaloshinskii vector is in a plane perpendicular
to the easy axis, a pointwise continuous transition from
the collinear to a noncollinear state is not possible. This
is plausible, since the noncollinear state gains energy only
from a rotation around the Dzyaloshinskii vector. For
more rigorous argumentation, we use the same procedure
as above. If the easy axis is parallel to €;, we can express
my, ™y by ma, mg, meo, s in Eq. (23), expand the
integrand around me = mg = e = g = 0 and neglect
all but the leading terms. Then we obtain the integrand

m2 4+ 1m2 + K1 (1 — m2 —m2) +m3 + Diing
and the corresponding Euler-Lagrange equations

2(1—K11)m2—2ﬁ12 = 0, (36)
—2K11m3—27h3 =0. (37)

These equations have no bounded solution for any Ky <
0, i.e. for K1 < Kp < K5 . Thus, if D points parallel to
the intermediate axis there is no stable noncollinear solu-
tion in the vicinity of the collinear solution. If D points
parallel to the hard axis, we cannot use the ansatz (23)
since the transformation (8) is not defined in this case.
But, in this case we can work with the simplified func-
tional (12). It is obvious, that this functional is not min-
imized by any function with non-constant sign¢: The
term (p° + sin?p) gives a positive contribution to the
energy for all ¢ # 0, whereas the integral

/dJ?IDI()b =

vanishes over one spatial period if the magnetization does
not perform a full rotation around the D-vector.

The critical line, that separates the regions labeled
(Col L D) and (NC L D) in Fig. 3, also corresponds
to a second-order phase transition from a collinear to a
flat rotating magnetic structure. However, at this transi-
tion the magnetization is not pointwise continuous. If | D]
is approaching the transition point from above, the mag-
netization shows a periodic structure of almost collinear
domains and the period length diverges at the transition
point. At this transition, the magnetization is confined
to the plane normal to the Dzyaloshinskii vector. This
case is discussed analytically in Refs. 27,34.

d(p DI —

{¢l$>0}

/ doDy (39

{¢lp<0}

B. Domain walls

If the magnetization is confined to a plane, the integra-
tion over the DM term is straightforward (cf. Eq. (19) )
and we can employ the analytical solution that is given
by Landau and Lifshitz in Ref. 2.

A further simple analytic solution exists in the case
that the Dzyaloshinskii vector points parallel to the easy

axis and there is no anisotropy in the plane normal to D
(i.e. Ky = 1lor Kp < K7 = Ko ). In this case the system
can be described with the energy functional (14). Obvi-
ously, this functional is not minimized if the ¢-dependent
factor (¢? + Dy ¢ + 1) is not minimized for all . Thus,
we obtain

, Dy
Pl == 5 (39)

(cf. Eq. (34)) and Eq. (14) simplifies to

92 2 DIQI
EH’ — [day |92 +sin20 (1-Z0) | . (40)
Kn=1 4

This equation is equivalent to Eq. (12) with an effective
anisotropy parameter (1 — %D%I). If this parameter is
positive, we can employ the solution of Eq. (17) and ob-
tain

2
_ D

¥ = £ arccos tanh <— 1 1 xn> (41)

and

D2
EH:4\/1—f. (42)

The case 1—1 D% < 0 implies that the magnetic struc-
ture is confined to the plane normal to the easy axis (cf.
Egs. (34) and (35)). In this case, our model does not
show different domains and hence does not show domain
walls.

If we introduce an anisotropy in the plane normal to
the Dzyaloshinskii vector (i.e. K11 # 1), ¢ is not constant
as the magnetization tries to avoid the hard axis (cf. inset
of Fig. 6). But if D points parallel to the easy axis,
the wall magnetization cannot be confined to the plane
normal to the hard axis. This can be seen from the Euler-
Lagrange equation of the functional (10):

0= 2(Di+2¢)0 sind cosd + 2 sin® ¥

oo (43)
—2 (K —sin“9) sinpcosg .

For ¢ =0 = const (if 0 < K71 < 1) or ¢ = 7/2 = const
(if 1 < Kyp) the Eq. (43) simplifies to

0= Dy sind cos® , (44)
this equation cannot be fulfilled for Dy # 0 and ¢ #

const.

V. SUMMARY

The inclusion of the Dzyaloshinskii-Moriya interaction
in a simple micromagnetic model can lead to a variety of
possible magnetic phases at zero temperature. Depend-
ing on the on the anisotropy constants and the size and



orientation of the Dzyaloshinskii vector, the domain mag-
netization can be collinear, spatially rotating within one
plane or truly three-dimensional. The latter case requires
an anisotropy in the plane normal to the Dzyaloshinskii
vector.

Even in the regime of collinear magnetized domains,
the domain-wall magnetization can be confined to a plane
or perform a three-dimensional path in spin space. If
the Dzyaloshinskii vector points parallel to the easy axis,
the wall magnetization can perform an infinite number
of rotations.
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