001     14603
005     20230426083023.0
024 7 _ |a 10.1103/PhysRevB.83.115305
|2 DOI
024 7 _ |a WOS:000288004000011
|2 WOS
024 7 _ |a 2128/10945
|2 Handle
037 _ _ |a PreJuSER-14603
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-HGF)0
|a Bringer, A.
|b 0
245 _ _ |a Spin precession and modulation in ballistic cylindrical nanowires due to the Rashba effect
260 _ _ |a College Park, Md.
|b APS
|c 2011
300 _ _ |a 115305
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 4919
|a Physical Review B
|v 83
|x 1098-0121
|y 11
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a We thank N. Demarina (Forschungszentrum Julich) for fruitful discussions regarding the Schrodinger-Poisson solver in cylindrical systems and U. Zulicke (Massey University, New Zealand) and R. Winkler (Northern Illinois University, USA) for discussions on the Rashba effect at semiconductor interfaces. Furthermore, we acknowledge the support of or work by S. Blugel and D. Grutzmacher (Forschungszentrum Julich). This work was supported by the Deutsche Forschungsgemeinschaft through Grant No. FOR 912.
520 _ _ |a The spin precession in a cylindrical semiconductor nanowire due to Rashba spin-orbit coupling has been investigated theoretically using an InAs nanowire containing a surface two-dimensional electron gas as a model. The eigenstates, energy-momentum dispersion, and the energy-magnetic field dispersion relation are determined by solving the Schrodinger equation in a cylindrical symmetry. The combination of states with the same total angular momentum but opposite spin orientation results in a periodic modulation of the axial spin component along the axis of the wire. Spin-precession about the wires axis is achieved by interference of two states with different total angular momentum. Because a superposition state with exact opposite spin precession exists at zero magnetic field, an oscillation of the spin orientation can be obtained. If an axially oriented magnetic field is applied, the spin gains an additional precessing component.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
542 _ _ |i 2011-03-04
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)128634
|a Schäpers, Th.
|b 1
|u FZJ
773 1 8 |a 10.1103/physrevb.83.115305
|b American Physical Society (APS)
|d 2011-03-04
|n 11
|p 115305
|3 journal-article
|2 Crossref
|t Physical Review B
|v 83
|y 2011
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.83.115305
|g Vol. 83, p. 115305
|0 PERI:(DE-600)2844160-6
|n 11
|q 83<115305
|p 115305
|t Physical review / B
|v 83
|y 2011
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.83.115305
856 4 _ |u https://juser.fz-juelich.de/record/14603/files/PhysRevB.83.115305.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/14603/files/PhysRevB.83.115305.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/14603/files/PhysRevB.83.115305.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/14603/files/PhysRevB.83.115305.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/14603/files/PhysRevB.83.115305.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:14603
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |d 31.12.2010
|g IBN
|k IBN-1
|l Halbleiter-Nanoelektronik
|0 I:(DE-Juel1)VDB799
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|g PGI
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|g PGI
|x 3
970 _ _ |a VDB:(DE-Juel1)126864
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-9-20110106
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)VDB881
999 C 5 |a 10.1016/S1369-7021(06)71651-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0022-3727/39/21/R01
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-3-642-13592-7
|1 H. Lüth
|2 Crossref
|9 -- missing cx lookup --
|y 2010
999 C 5 |a 10.1103/PhysRevB.74.245327
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nl8014389
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.230403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.115326
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1134/1.567220
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1134/1.558538
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.102730
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1564867
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.90.146801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.78.1335
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.55.R1958
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.367192
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0022-3719/17/33/015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.124485
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1347023
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.65.205304
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2165279
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00339-007-3899-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.phpro.2010.01.184
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.075439
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physe.2007.09.083
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.125309
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.125321
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.71.205328
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.79.121311
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.155449
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.235303
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.67.165329
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.70.233311
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1116/1.584619
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/b13586
|1 R. Winkler
|2 Crossref
|9 -- missing cx lookup --
|y 2003
999 C 5 |a 10.1088/0957-4484/17/11/S01
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21