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Abstract

Background: One of the most significant consequences of contemporary global change is the rapid decline of biodiversity
in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to
single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than
those of plant diversity; however, current knowledge mainly relies on short-term experiments.

Methodology/Principal Findings: We studied changes in the impacts of plant diversity and presence of key functional
groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the
establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the
trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in
herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and
functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of
plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with
the relevance of the latter decreasing in time.

Conclusions/Significance: Plant diversity effects on biota are not only due to the presence of key plant functional groups or
plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the
validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially
drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant
diversity and reinforcing the importance of biodiversity for ecosystem functioning.
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Introduction

Mankind faces multiple anthropogenic global environmental

changes, which are now large enough to exceed the bounds of

natural variability [1,2]. One of the most significant consequences

of contemporary global change is the rapid decline of biodiversity

in many ecosystems [3–6]. This unprecedented biodiversity loss

has generated concern over the consequences for ecosystem

functioning and services, and prompted a multitude of studies

[7,8]. Most studies focused on the effects of diversity loss on single

trophic levels or measures of ecosystem functioning, considerably

less attention has been paid to the consequences of plant diversity

loss for the performance of multiple trophic levels and ecosystem

functions [8–11]. This is surprising since cascading effects of

biodiversity loss may result in a vicious circle of diversity loss due

to the interconnectance between ecosystem or foodweb compo-

nents, and the incidence of soil feedback mechanisms [12–14].

Terrestrial grasslands are widespread model systems for

investigating the biodiversity – ecosystem functioning relationship

[7,15–18]. Soil biota constitute a significant component of

terrestrial ecosystems by governing essential ecosystem functions,

such as decomposition and recycling of organic residues, and
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thereby primary productivity and plant community composition

[19–21]. Moreover, soil biota comprise some of the most

deleterious herbivores and pathogens often emerging as destruc-

tive pests [20,22]. Although this knowledge provoked multiple

studies on the relationship between aboveground (plant) and

belowground diversity and functions, the significance of this

relationship still is disputed [10,23–25].

The question arises how plant diversity affects soil biota and

why there is this lack of consistency and mechanistic understand-

ing. For instance, there is an ongoing debate on the relevance of

plant species richness versus that of plant species identity or

presence of key plant functional groups for soil biota and functions

[11,23,25,26]. Since virtually all soil organisms are heterotrophs,

and thus essentially rely on the quantity and quality of plant

derived residues entering the soil subsystem [20,27,28], declining

plant diversity, accompanied by deterioration of resource diversity,

quantity and quality, is likely to impact the density, diversity and

functioning of soil biota [10,25]. Hooper et al. [10] suggested a

step-by-step hypothesis how the diversity of primary producers

results in higher belowground diversity assuming strong bottom-up

control of biodiversity in soil communities. In essence, increased

diversity of plant derived resources increases the diversity of

decomposers and herbivores in soil, which in turn promotes the

diversity of other components of the soil food web. Moreover, an

additional causal relationship between above- and belowground

diversity may arise from enhanced microhabitat diversity in

complex plant communities [29]. Acknowledging the mixed

evidence on the correlation between above- and belowground

density and diversity, Hooper et al. [10] highlighted the need to

acquire a mechanistic understanding of this relationship and

ascribed this topic top research priority.

Most previous studies highlighted the significance of key plant

functional groups for the performance of soil biota. Particularly

legumes enhance the fertility of soils by N2 fixation and the input

of high quality (nitrogen-rich) litter materials [24,26,30–32].

Positive impacts of plant diversity thus often have been ascribed

to the increased probability of including legume species in more

diverse plant communities [24,26,33], i.e. the selection or

sampling effect of plant diversity [34,35]. Moreover, increased

performance of soil biota has been attributed to elevated primary

productivity [11,24].

Recent studies indicate that missing or inconsistent responses of

soil biota to plant diversity may have been due to belowground

legacy effects and the short-term character of most studies

[25,26,36]. Indeed, most studies are based on snapshot measures

and detailed investigations of soil biota in time are extremely

scarce [26,37]. Further, only few studies considered a wide range

of taxonomic or functional groups of soil biota in a single

experiment [11,24,26,33,36] complicating the comparability of

results. In addition, the observed variability in the response of soil

biota to plant diversity may have been due to the investigation of

differential trophic positions relative to the manipulated level.

Recent reports suggest that the effect of diversity loss decreases

with the trophic distance from the manipulated level [8,26].

In order to improve our mechanistic understanding of plant

diversity effects on soil biota, we repeatedly sampled soil

microorganisms and soil fauna in the framework of the Jena

Experiment, a large grassland plant diversity experiment in

Germany [18]. We intended to provide a comprehensive overview

of plant community effects on multiple functional components of

soil biota, ranging from short-term (two years after establishment)

to long-term effects (after six years). Moreover, the Jena

Experiment offers the unique possibility to independently explore

the impacts of plant species richness (1–60 species), plant

functional group richness (1–4 groups), and presence of key plant

functional groups. The block design and the high replication of the

Jena Experiment allow accounting for soil heterogeneity effects

[18] and to delineate genuine diversity effects [10]. Determination

of plant productivity measures above and below the ground

further allows exploring the relevance of mere biomass effects. We

hypothesized that (1) the role of plant diversity as driver of soil

biota increases with time thereby exceeding that of the presence of

key plant functional groups, and (2) changes in plant diversity

effects depend on the functional affiliation of soil biota with

decomposers responding slowest due to soil legacy effects.

Materials and Methods

Experimental setup
The study was conducted in the framework of the Jena

Experiment, a large field experiment investigating the role of

biodiversity for element cycling and trophic interactions in

grassland communities [18]. The study site is located on the

floodplain of the Saale river at the northern edge of the city of Jena

(Thuringia, Germany). Mean annual air temperature 3 km south

of the field site is 9.3uC and annual precipitation is 587 mm (Fig.

S1; [38]). The site had been used as an arable field for the last 40

years and the soil is an Eutric Fluvisol. The experiment was

established in May 2002 and the studied system represents Central

European mesophilic grassland traditionally used as hay meadow

(Arrhenatherion community). A pool of 60 native plant species was

used to establish a gradient of plant species (1, 2, 4, 8, 16 and 60)

and plant functional group richness (1, 2, 3 and 4) in a total of 82

plots of 20620 m (Table S1; [18]). Using above- and belowground

morphological traits, phenological traits and N2 fixation ability,

plant species were aggregated into four plant functional groups:

grasses (16 species), small herbs (12 species), tall herbs (20 species),

and legumes (12 species) [18]. Experimental plots were mown

twice a year (June and September), as is typical for hay meadows,

and weeded twice a year (April and July) to maintain the target

species composition. Plots were assembled into four blocks

following a gradient in soil characteristics, each block containing

an equal number of plots of plant species and plant functional

group richness levels. Further information on the design and setup

of the Jena Experiment is given in Roscher et al. [18].

Soil biota
Soil samples for soil microbial measurements were taken from

all plots in May 2004, 2006 and 2008. Briefly, at each sampling

campaign, five soil samples were taken to a depth of 5 cm using a

metal corer (diameter 5 cm), pooled and stored at 5uC. Before

measurement, soil samples were homogenized, sieved (2 mm) to

remove larger roots, animals and stones [39] and adjusted to a

gravimetric soil water content of 25%. Microbial biomass C (Cmic)

was measured using an O2-microcompensation apparatus [40].

The microbial respiratory response was measured at hourly

intervals for 24 h at 22uC. Substrate-induced respiration was

calculated from the respiratory response to D-glucose [39].

Glucose was added according to preliminary studies to saturate

the catabolic enzymes of microorganisms (4 mg g21 dry weight

solved in 400 ml deionized water). The mean of the lowest three

readings within the first 10 h was taken as maximum initial

respiratory response (MIRR; ml O2 h21 g21 soil dry weight) and

microbial biomass (mg C g21 soil dry weight) was calculated as 38

6MIRR [41].

Soil meso- and macrofauna were collected from soil cores taken to

a depth of 10 cm in autumn 2004 (October), 2006 (November) and

2008 (October). Soil cores were taken using a steel corer (5 cm
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diameter for soil mesofauna, and 22 cm diameter for soil

macrofauna). One soil core per plot for each meso- and macrofauna

were taken (all 82 plots), and soil animals were extracted by heat [42],

collected in diluted glycerol, and transferred into ethanol (70%) for

storage. Soil animals were determined [43–49] and counted. A

detailed list of soil animal taxa and their trophic assignment is given in

Table S2. In the following, soil animal diversity is used as surrogate

for the number of taxa per trophic group.

Plant productivity
In order to explore if plant community effects are based on

primary productivity, we considered data on plant shoot biomass

(community biomass, cut 3 cm above soil surface level; see [50] for

details) and plant root biomass (root diameter ,2 mm, in 0–0.3 m

soil depth; see [51] for details) in 2004, 2006 and 2008,

respectively. These covariates were considered since changes in

the performance of soil biota due to plant community effects have

primarily been ascribed to plant productivity [11,24,52].

Statistical analyses
Data generally were log-transformed to meet the requirements

of ANOVAs (normal distribution and homoscedasticity of

variances). Repeated measures analysis of variance as part of the

general linear model (GLM, type I sum of squares) was used to

analyze the effects of time (TI; if possible), block (BL; soil abiotic

conditions), plant species richness (SR), plant functional group

richness (FR), and presence of grasses (GR) and legumes (LE) on

soil microbial biomass, the density of Collembola, Oribatida as

well as on the density and diversity of macrofauna decomposers,

herbivores and predators (in 2004, 2006 and 2008) in sequential

analyses. We did not test the effects of the plant functional groups

small and tall herbs due to negligible effects in pilot analyses (not

shown). For the analysis of macrofauna density and diversity we

used standardized values (minimum value = 0, maximum value

= 1) in order present comparable results. We had to perform the

analysis of soil macrofauna on the basis of trophic groups because

low densities of single taxa did not allow for separate analyses (see

Table S2 for the assignment of taxa to trophic groups). F-values
given in text and tables refer to those where the respective factor

was fitted first [53]. BL was always fitted first followed by plant

community properties (SR, FR, GR, LE). Additionally, we tested if

impacts of plant community characteristics rely on plant

productivity by fitting plant shoot biomass and plant root biomass

in 2004, 2006 and 2008 as covariates in separate analyses of

covariance. Therefore, plant productivity measures were fitted

after BL but before plant community properties. Moreover, we

tested if plant diversity effects are solely based on the presence of

key plant functional groups by considering the significance of plant

diversity measures when fitted after plant functional groups. In

order to investigate if plant species richness effects on decomposer

animals (Collembola, Oribatida and macrofauna decomposers) are

partly due to changes in microbial biomass as food source, we

performed separate sequential GLMs by fitting microbial biomass

before plant species richness.

We investigated the relevance of different plant community

properties by comparing (1) the frequency of significant effects of

plant community properties on soil biota (0 for non-significant, 1

for significant effects) using Cochran Q test, and (2) the F-values of

effects of plant community properties on soil biota using Friedman

ANOVA and Wilcoxon Matched Pairs Test. For this comparison

we used the between-subject effects of the MANOVA results.

These non-parametric tests are suitable for dependent variables

and thus for the comparison of plant community properties.

Additionally, we performed regressions between time (2004, 2006

and 2008) and the F-values of plant community properties

(protected ANOVAs) in order to investigate if the relevance of

different plant community properties changed over time. The

analyses were performed using SAS V9.2 (SAS Institute Inc) and

STATISTICA 7.1 (Statsoft). Means (6 standard deviation)

presented in Table S3 were calculated using non-transformed

data.

Results

Generally, impacts of soil heterogeneity (block) significantly

affected several groups of soil biota and had to be considered in the

statistical analyses, but are not presented and discussed in detail

since this study focuses on plant community impacts on soil biota.

A list of soil animal taxa of the field site of the Jena Experiment is

given in Table S2 and mean values (6 standard deviation) per

taxon and year are given in Table S3. Data from single years of

some animal taxa have been published previously (Collembola

2006, [54]; macrofauna 2008, Oribatida 2006, [55]).

Soil microorganisms
Annual data on the effects of plant community characteristics

on microbial parameters [25] and effects of plant diversity on the

mean microbial biomass of the years 2006, 2007 and 2009 [55]

have been published elsewhere. Here data of 2004, 2006 and 2008

are included and analysed in the same way as data on soil fauna to

allow a straightforward comparison of the response of these two

major soil biota groups and in order to compare the relevance of

plant community properties for soil biota. In general, soil

microbial biomass increased significantly with plant species and

functional group richness (Table 1), however, the impact of both

plant diversity measures varied in time (Table S4). While soil

microbial biomass was not affected significantly by plant diversity

in 2004, it increased significantly with both plant diversity

measures in 2006 and 2008 (Fig. 1A, Table 2). Moreover,

microbial biomass was reduced in the presence of grasses (28%),

but increased in the presence of legumes (+10%) in 2004, whereas

it was slightly increased in the presence of grasses (+2%) and

legumes (+2%) in 2008 (Table 1, 2, S4).

Soil mesofauna
Here we focus on annual variations in Collembola density and

on temporal changes of plant community effects, for seasonal

variations in plant community effects on Collembola density and

diversity at the Jena Experiment field site see [54]. Collembola

density generally increased with increasing plant diversity

(Table 1), although impacts of plant species richness varied in

time (Table S4). The positive effect of plant species and functional

group richness was most pronounced in 2004 (Fig. 1B), only true

for plant species richness in 2008 and not present in 2006 (Table 2).

However, it should be noted that in order to investigate plant

community effects in time we had to exclude a number of plots

which rendered the effect of plant diversity on Collembola density

insignificant in 2006. Including spring and autumn samples in

Sabais et al. [54] proved Collembola density to increase with plant

diversity in 2006. The presence of plant functional groups affected

Collembola densities significantly and largely consistently (Table 1,

S4). However, the effects were most pronounced in 2004;

Collembola densities were increased by +263% and +380% in

the presence of grasses and legumes, respectively (Table 2).

Plant species richness increased the density of Oribatida

(Table 1), although this was not consistent in time (Table S4)

and only significant in 2008 (Fig. 1C, Table 2). Moreover, the

density of Oribatida was increased significantly in the presence of

Plant Diversity Effects on Soil Biota

PLoS ONE | www.plosone.org 3 January 2011 | Volume 6 | Issue 1 | e16055



grasses in 2004 (+111%; Table 2). The remaining plant

community properties had no significant effect on the density of

Oribatida (Table 1, 2, S4).

Fitting microbial biomass before plant species richness in

additional sequential analyses rendered the effect of plant species

richness on Collembola density insignificant (F1,73=6.10,

P=0.016 changed to F1,72=3.44, P=0.068) and decreased the

significance of the effects on Oribatida density in 2008

(F1,73=8.99, P=0.004 changed to F1,72=5.06, P=0.027).

Soil macrofauna
The density and diversity of decomposers was significantly

affected by plant community properties (Table 1). While the

impact of plant diversity measures on decomposer density and

diversity was consistent in time that of legumes varied significantly

(Table S4). In 2004 and 2006, plant community impacts on

decomposer density and diversity were weak (Table 2). In 2004,

decomposer density and diversity were increased by +93% and

+44% in the presence of legumes, respectively. In 2006, there was

the tendency of increased decomposer diversity with increasing

plant functional group richness (Table 2). In 2008, decomposer

density increased significantly with increasing plant species and

functional group richness (Fig. 2E, Table 2). Moreover, decom-

poser diversity increased significantly with increasing plant species

richness (Fig. 2F), but decreased in the presence of grasses (29%).

The remaining plant community properties did not significantly

affect decomposer density and diversity (Table 1, 2).

Fitting microbial biomass before plant species richness in

additional sequential analyses rendered the effect of plant species

richness on decomposer density insignificant (F1,71=6.06,

P=0.016 changed to F1,72=2.77, P=0.10) but did not change

its effect on decomposer diversity in 2008 (F1,71=6.59, P=0.012

changed to F1,72=6.03, P=0.017).

The density and diversity of herbivores were generally affected by

each of the plant community properties studied (Table 1). This was

largely consistent in time, despite the tendency of varying plant

species richness effect on herbivore density (Table S4). In 2004

herbivore density and diversity increased significantly with increasing

plant species and functional group richness (Fig. 2A, B, Table 2). In

2006, this significant relationship was only true for plant functional

group richness, while there was only the tendency of increased

herbivore diversity with increasing plant species richness (Fig. 2C, D,

Table 2). By contrast, in 2008 plant species richness was more

Table 1. Between-subject factors effects.

BL SR FR GR LE ER

Microorganisms 16.12 *** 16.17 *** 16.81 *** 1.75 7.60 ** 70

Mesofauna

Collembola 0.73 16.67 *** 9.74 ** 4.55 * 8.19 ** 66

Oribatida 0.65 4.00 * 1.00 3.31 0.06 66

Macrofauna

Density

Decomposers 8.55 *** 7.55 ** 10.66 ** 1.67 4.61 * 72

Herbivores 3.05 * 14.65 *** 15.05 *** 6.67 * 8.83 ** 71

Predators 1.30 6.90 * 10.79 ** 6.30 * 3.11 72

Diversity

Decomposers 3.94 * 4.64 * 4.87 * 0.26 3.21 72

Herbivores 2.51 22.13 *** 22.64 *** 11.85 ** 6.56 * 71

Predators 1.41 5.96 * 6.89 * 7.54 ** 1.57 72

MANOVA (repeated-measures GLM) table of F-values of between-subject
factors effects of Block (BL), plant species richness (SR), plant functional group
richness (FR) and presence/absence of grasses (GR) and legumes (LE) on the
biomass of microorganisms, the density of mesofauna as well as on the density
and diversity of macrofauna decomposers, herbivores and predators.
Significant effects (P,0.05) of plant community properties are given in bold.
***P , 0.001,
**P,0.01,
*P,0.05. Degrees of freedom: BL = 3, SR, FR, GR, LE = 1 each. Error degrees of
freedom (ER) are given in italics.
doi:10.1371/journal.pone.0016055.t001

Figure 1. Plant species richness effects on soil microorganisms
and mesofauna. Variations in (A) soil microbial biomass [mg Cmic g

21

soil dry weight], and the density of (B) Collembola, and (C) Oribatida [all
individuals m22] as affected by plant species richness in different years.
Regression lines indicate significant effects (P,0.05); brown lines
indicate decomposers in the broader sense (including microbivores);
means (lines) with standard error (boxes), standard deviation (error
bars), extremes (dots) and outliers (asterisks).
doi:10.1371/journal.pone.0016055.g001

Plant Diversity Effects on Soil Biota
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Table 2. Plant community effects in single years.

2004 BL SR FR GR LE ER

Microorganisms 16.35 *** 0.35 1.31 12.87 *** 4.51 * 70

Mesofauna

Collembola 0.06 18.28 *** 10.96 ** 6.06 * 8.96 ** 66

Oribatida 0.62 1.42 0.96 4.52 * 0.62 66

Macrofauna

Density

Decomposers 4.87 ** 1.83 3.08 0.86 3.12 72

Herbivores 3.14 * 11.40 ** 11.16 ** 0.01 0.89 71

Predators 1.77 4.77 * 12.97 *** 0.03 0.28 72

Diversity

Decomposers 4.83 ** 0.4 1.37 0.32 2.82 72

Herbivores 1.35 13.97 *** 11.73 *** 0.01 1.1 71

Predators 0.6 11.35 ** 15.22 *** 0.11 0.06 72

2006

Microorganisms 5.08 ** 12.02 *** 8.07 ** 0.12 0.6 70

Mesofauna

Collembola 4.04 * 0.12 0.28 0.09 2.12 66

Oribatida 3.75 * 0.39 0.31 0.06 0.01 66

Macrofauna

Density

Decomposers 1.23 0.84 2.28 0.57 5.72 * 72

Herbivores 0.98 0.98 8.21 ** 0.66 0.01 71

Predators 1.63 1.46 3.09 1.21 0 72

Diversity

Decomposers 0.02 0.13 2.81 0.65 5.55 * 72

Herbivores 0.37 2.9 9.06 ** 1.46 0.46 71

Predators 3.85 * 0.04 0.88 0.58 0.07 72

2008

Microorganisms 13.94 *** 14.03 *** 18.90 *** 0.03 0.13 70

Mesofauna

Collembola 1.20 4.56 * 1.98 0.65 0.43 66

Oribatida 1.46 6.56 * 1.64 2.68 0.00 66

Macrofauna

Density

Decomposers 3.46 * 6.79 * 5.89 * 1.16 0.48 72

Herbivores 3.38 * 5.58 * 2.24 0.07 0.16 71

Predators 8.07 *** 1.00 0.04 0.30 1.42 72

Diversity

Decomposers 2.26 7.97 ** 1.56 3.55 2.77 72

Herbivores 5.48 ** 13.90 *** 7.21 ** 0.18 1.51 71

Predators 6.25 *** 0.81 0.48 3.25 0.77 72

F-values of protected GLMs for the effects of Block (BL), plant species richness (SR), plant functional group richness (FR) and presence/absence of grasses (GR) and
legumes (LE) on the biomass of microorganisms, the density of mesofauna as well as on the density and diversity of macrofauna decomposers, herbivores and predators
in 2004, 2006 and 2008.
Significant effects (P,0.05) of plant community properties are given in bold.
***P,0.001,
**P,0.01,
*P,0.05. Degrees of freedom: BL = 3, SR, FR, GR, LE = 1 each. Error degrees of freedom (ER) are given in italics.
doi:10.1371/journal.pone.0016055.t002
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important than plant functional group richness; herbivore density and

diversity increased with increasing plant species richness, but only

herbivore diversity increased significantly with increasing plant

functional group richness (Fig. 2E, F, Table 2). The density and

diversity of herbivores were increased in the presence of legumes by

+32% and +41% in 2004, respectively, and in the presence of grasses

by +13% and +36% in 2006, respectively (Table 2).

The density and diversity of predators was affected by plant

species and functional group richness as well as by the presence of

plant functional groups (Table 1). However, the effect of plant

species richness on predator diversity, and the effect of plant

functional group richness and legume presence on predator

density and diversity varied significantly in time (Table S4). In

2004, predator density and diversity increased significantly with

increasing plant species and functional group richness (Fig. 2A, B,

Table 2). However, in 2006 there was only trend of increased

predator density with increasing plant functional group richness

(Table 2). In 2008, there was no significant plant diversity effect on

predator density and diversity (Fig. 2E, F, Table 2). In 2004,

predator density was increased by +28% in the presence of

legumes, and predator diversity was increased by +43% and +41%

in the presence of grasses and legumes, respectively (Table 2).

Figure 2. Plant species richness effects on soil macrofauna. Variations in the standardized (0 to 1) density (A, C, E) and diversity (B, D, F) of
decomposers, herbivores and predators as affected by plant species richness in 2004 (A, B), 2006 (C, D) and 2008 (E, F). Regression lines indicate
significant effects (P,0.05) and marginally significant effects (P,0.1; dashed line); brown lines indicate decomposers in the broader sense (including
microbivores), green lines indicate herbivores, and red lines indicate predators; means (lines) with standard error (boxes), standard deviation (error
bars), extremes (dots) and outliers (asterisks).
doi:10.1371/journal.pone.0016055.g002

Plant Diversity Effects on Soil Biota
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Relevance of plant community properties
Overall, the relevance of plant community properties for soil

biota performance varied significantly (frequency (FQ): Q=8.05,

P=0.045; F-values (FV): Chi2=15.67, P=0.0013). Plant species

richness was more important for the performance of soil biota than

presence of grasses (FQ: Q=4.00, P=0.046; FV: Z=2.31,

P=0.021) and legumes (FQ: Q=4.00, P=0.046; FV: Z=2.67,

P=0.008; Fig. 3). While the relevance of plant species richness and

plant functional group richness did not differ significantly (FQ:

Q=1.00, P=0.32; FV: Z=0.89, P=0.38), plant functional group

richness was more important than the presence of grasses (FQ:

Q=3.00, P=0.083; FV: Z=2.31, P=0.021) and legumes (FQ:

Q=3.00, P=0.083; FV: Z=2.67, P=0.008; Fig. 3).

The relevance of plant species richness (r=0.09, P=0.66) and

plant functional group richness (r=20.29, P=0.15) were largely

consistent in time, whereas the relevance of the presence of grasses

(r=20.37, P=0.058) and legumes (r=20.53, P=0.005) de-

creased significantly over time.

Fitting the presence of plant functional groups before plant

species richness and plant functional richness hardly ever eliminated

the significance of plant diversity measures (Table S5). Interestingly,

plant species richness remained significant or marginally significant

even when fitted after plant functional groups richness in affecting

microbial biomass in 2006 (F1,70=4.67; P=0.034), Collembola

density in 2004 (F1,66=8.53; P=0.005), Oribatida density in 2008

(F1,66=4.95; P=0.030), macrofauna herbivore density in 2008

(F1,71=3.34; P=0.072), macrofauna herbivore diversity in 2004

(F1,71=3.90; P=0.051) and 2008 (F1,71=6.87; P=0.011), and

macrofauna decomposer diversity in 2008 (F1,71=7.03; P=0.010).

Relevance of plant productivity
Considering plant productivity measures in additional ANCO-

VAs showed that both plant shoot biomass and root biomass were

not responsible for plant diversity effects in each of the trophic

groups of macrofauna. Despite significant positive correlations

between plant shoot biomass and the density and diversity of

herbivores in 2004, the diversity of decomposers in 2008, that

between plant root biomass and decomposer density in 2006, and

a negative correlation between plant root biomass and the

diversity of predators in 2006, fitting plant productivity measures

as covariates hardly ever eliminated the significance of plant

community properties (Table S5).

Discussion

Conform to our first hypothesis, results of the present study

indicate that the relative importance of major plant functional

groups as drivers of soil biota decrease with time. In contrast, the

importance of plant diversity remained rather constant, suggesting

that in the long term plant diversity effects on soil biota are more

important than the presence of key plant functional groups and

plant productivity. Interestingly, the effect of plant species richness

remained significant for several groups of soil biota even when fitted

after plant functional group richness, suggesting that plant diversity

effects on soil biota were not restricted to functional group richness.

The relevance of plant community properties for soil
biota
The superior role of plant diversity for soil biota as compared to

plant productivity and the presence of key functional groups

contrasts markedly to results of previous studies highlighting the

predominant role of the presence of legumes [11,24,26,33,36,37].

Recently, Eisenhauer et al. [25] stressed that plant diversity effects

on soil biota have been underrated due to the short-term character

of most experiments. They concluded that after a distinct

belowground time-lag plant species richness is relevant for the

performance and functions of soil microorganisms. Although

legumes play an important role in temperate grassland by

improving N availability [7,30,32], it has recently been shown that

plant diversity effects on aboveground ecosystem functioning do not

exclusively rely on the presence of legumes [56–58]. The results of

the present study suggest a similar pattern for belowground

responses. This may be due to the fact that soil biota do not solely

rely on the availability of nitrogen but also on that of other nutrients

such as phosphorous and micronutrients [30] pointing to the

relevance of diverse plant derived inputs. Remarkably, plant

diversity effects did not only rely on the functional diversity of

plant assemblages confirming the findings by Reich et al. [58] on

aboveground ecosystem functioning, and reinforcing the prominent

role of plant species richness for soil processes.

Figure 3. Relevance of plant community properties. (A)
Percentage of soil biota variables significantly affected by plant species
richness (SR), plant functional group richness (FR), presence of grasses
(GR) and presence of legumes (LE). (B) Mean F-values of the effects of
plant species richness, plant functional group richness, presence of
grasses and presence of legumes on soil biota. Asterisks indicate
significant (** P,0.01, * P,0.05) and marginally significant ((*) P,0.1)
effects. Means (lines) with standard error (boxes) and standard deviation
(error bars).
doi:10.1371/journal.pone.0016055.g003
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Although based on a limited number of measurements, the

results indicate that the decline in the role of plant functional

groups for soil biota was due to decreasing impacts of grasses and

legumes. In fact, the dominance of these two plant functional

groups decreased with time: the mean percentage biomass of

grasses in mixtures decreased from 4666% in 2004 to 2265%

and 2865% in 2006 and 2008, respectively, and the mean

percentage biomass of legumes in mixtures decreased from

3165% and 3965% in 2004 and 2006, respectively, to 1864%

in 2008 [50]. Presumably, this was due to the fact that fast-

establishing grass species benefited most from abundantly available

soil nutrients after establishment of the experiment on a former

highly fertilized agricultural field. Gradual depletion of soil

phosphorous at the field site of the Jena Experiment (C. Roscher,

unpubl. data) may be responsible for the decline of legumes over

time.

The mechanistic basis of plant diversity effects on soil
biota
Virtually all groups of soil biota were positively affected by plant

diversity in the present study, irrespective of trophic group

affiliation. How can plant diversity promote and govern the

performance of soil biota in such a pronounced way? Previous

studies highlighted the relevance of mere biomass effects,

suggesting that soil biota profit from elevated quantity of plant

derived inputs [11,52] which increase with plant diversity

[7,59,60]. Results of recent and the present studies question this

‘‘quantity effect’’ and highlight the significance of quality of plant

residue inputs [25,55,61,62]. Interestingly, in the present study

plant productivity measures were of minor importance both in the

short and the long term. Plant residues enter the soil subsystem

either via aboveground litter materials [20,28] or via root litter and
exudates [63,64]. Again, root biomass effects poorly explained

plant diversity effects on soil biota, and it was recently shown that

both variables are not [11,25] or even negatively correlated [37];

but see [65]. Thus, the key factor connecting above- and

belowground diversity presumably is root-derived resources.

Changes in root exudation can have pronounced effects on the

structure of soil microbial communities [66] and hence on the soil

food web. Remarkably, the amount of aboveground plant

resources entering the belowground system likely is rather low

due to the typical management of Central European mesophilic

grasslands, in that plants are mown and the aboveground biomass

removed twice a year. Milcu et al. [67] recently showed that plant

diversity stabilizes belowground processes, presumably due to

more consistent plant derived belowground inputs. The explora-

tion of the composition of root-derived resources and their

diversity represents a promising venue for achieving a mechanistic

understanding of plant diversity effects on soil biota.

Microhabitat diversity may be another plant community

characteristic promoting the performance of soil biota. Litter

materials not only function as food but also as shelter, suggesting

that both palatable and unpalatable litter materials may affect soil

biota in a complementary way by enhancing food quality and

physical protection [10]. Likewise, differences and diversity in root

morphology may allow soil biota to populate the soil profile more

completely than in simply structured environments. Thus,

diversity in root morphology likely adds to belowground

microhabitat richness.

Temporal changes of plant diversity effects
Considering recent studies [25,60,68] we expected the signifi-

cance of plant diversity effects to increase in time. This was not

confirmed by the present experiment. However, while impacts on

the density and diversity of decomposers occurred only six years

after establishment of the model grasslands, those on herbivores

were largely consistent in time, and those on predators were only

significant after two years. Thus, hypothesis (2) is confirmed

suggesting that changes in plant diversity effects depend on the

functional affiliation of soil biota. Alterations in plant productivity

above and below the ground were not responsible for the temporal

changes in plant diversity effects (as indicated by fitting plant shoot

and root biomass as covariates). As shown in a recent study by

Eisenhauer et al. [25], microbial biomass and functions on the

same field site strongly rely on the accumulation of dead plant

materials and root exudates before plant community effects

became manifest after a time lag of four years. The relevance of

soil legacy effects on soil microorganisms is well established

[12,69,70] and also applies for plant diversity effects on

microorganisms changing from disturbed (zymogeneous) to more

established (autochthonous) communities in grassland experiments

[25,69]. As decomposer animals also rely on plant derived

resources entering the belowground subsystem [20,27], the

significant plant diversity effects on decomposer density and

diversity in 2008 in the present study may have been driven by the

accumulation of diverse plant residues and microbial communities.

Unfortunately, the present study comprises too few measurements

to adequately test if plant diversity effects on decomposers

increased over time; however, the fact that microorganisms,

Oribatida and macrofauna decomposer density and diversity only

positively responded to plant diversity after a time-lag of four to six

years point in this direction. Moreover, as many decomposer

animals at least in part feed on soil microorganisms, we suggest a

microorganism-mediated propagation of plant diversity effects to

soil decomposers. Supporting this assumption, fitting microbial

biomass before plant species richness in 2008 rendered the effects

of plant species richness on the density of Collembola and

macrofauna decomposers insignificant and reduced the signifi-

cance of plant diversity effects on Oribatida. Additionally, the

build-up of a root system [68] may have increased microhabitat

diversity over time. The delayed response of decomposers to

changes in plant diversity deserves further attention since it is likely

to result in changes in soil feedbacks due to decomposer-mediated

effects on nutrient cycling.

Belowground herbivores were strongly and consistently affected

by plant diversity. The slight decrease of plant diversity effects in

2006 presumably was due to unusual dry weather conditions in

June and July of this year (Fig. S1), generally resulting in low

densities of soil animals and weak plant community effects. As

herbivores directly consume fresh plant materials, impacts on

plant diversity occurred almost without delay in 2004, i.e. two

years after establishment of the experiment.

Generally, the majority of studies focussing on plant diversity

effects on herbivores either investigated aboveground taxa [71–

73], herbivory [56,74,75] or plant feeding Nematoda

[26,33,36,76]. Two non-mutually exclusive hypotheses exist

explaining how herbivore densities are affected by plant diversity

[77]. The ‘‘resource concentration hypothesis’’ predicts that

densities of specialized herbivores decrease with plant diversity

due to the dilution of host plants within a community of non-target

plants (bottom-up effect). The ‘‘enemies hypothesis’’ assumes that

natural enemies of herbivores are likely to be more abundant in

diverse plant communities providing higher prey and refuge

diversity as well as additional resources including pollen and

nectar. Consequently, herbivore suppression by natural enemies

should be more pronounced in diverse plant assemblages (top-

down effect). Both hypotheses, therefore, predict lower herbivore

density in diverse plant communities, albeit due to very different

Plant Diversity Effects on Soil Biota

PLoS ONE | www.plosone.org 8 January 2011 | Volume 6 | Issue 1 | e16055



mechanisms. Experimental evidence for this negative relationship

between plant diversity and herbivore performance, however, is

scarce [72,73].

Results of the present study contradict both of these hypotheses

identifying belowground herbivores as the trophic group being

most positively and consistently affected by plant diversity.

Interestingly and similar to decomposers, plant biomass did not

explain the increase in herbivore density and diversity in the short

and the long term. We therefore conclude that the richness of

microhabitats [26] and/or the availability and diversity as well as

temporal stability of high-quality food resources [55,67,76]

represent the most important plant community characteristics

affecting belowground herbivore performance. This assumption is

supported by the fact that the impact of plant diversity on the

diversity of macro-invertebrate herbivores was more significant

than that on herbivore density; pure biomass effects should have

resulted in elevated herbivore density, while habitat or resource

richness is likely to predominantly affect herbivore diversity.

Potentially, the lack of conformity of the response of herbivores to

the ‘‘resource concentration hypothesis’’ and the ‘‘enemies

hypothesis’’ may also have been due to shifts in the herbivore

community structure from specialists to generalists. Unfortunately,

low numbers of macrofauna taxa did not allow more detailed

analyses.

Although previous studies on soil nematodes, which comprise

some of the most relevant soil herbivores, highlighted the

relevance of plant identity effects rather than that of plant

diversity [26,76], a recent long-term study showed that effects of

particular species vary in time [26]. Viketoft et al. [26] ascribed

this increase in nematode diversity to sampling effects, particularly

to the presence of the legume species Trifolium pratense. By contrast,

our results argue for complementarity effects of plant diversity on

herbivores since fitting the presence of plant functional groups

before plant diversity measures reduced their significance only

marginally.

In contrast to decomposers and herbivores, and our expecta-

tions, effects of plant diversity on the density and diversity of

macro-invertebrate predators only occurred two years after

establishment of the experiment. The initial positive relationship

between plant diversity and predator performance may have been

due to elevated prey (herbivore) density and diversity, with the

mobility of most predator species allowing to respond fast to prey

availability. However, the lack of plant diversity effects on

predators in 2008 is difficult to interpret. Two factors, potentially

acting in concert, may have resulted in this pattern. First, as

argued by Gastine et al. [33] complex interactions between

organisms obscure plant diversity effects on higher trophic levels.

Prey availability was increased in more diverse plant communities

in 2008, as both decomposer and herbivore densities increased

with plant diversity. Potentially, elevated intraguild predation

counteracted increased prey availability. Second, higher trophic

levels not considered in the present study, such as higher-order

(top) predators and parasitoids, may have reached high densities in

diverse plant communities, thereby suppressing lower-order

predators [78]. More long-term studies are needed to shed light

on the mechanisms responsible for plant diversity effects on soil

macro-invertebrate predators.

Caveats
The efficiency of our sampling method for soil meso- and

macrofauna depends on the mobility and ecology of soil animal

taxa. Particularly immobile groups, such as Diptera larvae, were

underrepresented and were thus not included in the analyses.

Further, by taking only one soil core per plot and year for soil

meso- and macrofauna we disregarded the role of soil heteroge-

neity and climatic conditions. For instance, low precipitation in

June and July 2006 and resulting low densities of soil animals may

have masked stronger plant community effects. Taking more

samples per plot to more adequately represent the plant

community composition of the plots was not possible due to the

time necessary for taking and analyzing further samples. However,

as the limited sampling design decreases the power of our statistical

analyses due to elevated error variances we assume the results to

be robust. Also, the large number of statistical tests could have

inflated the chance of getting significant results, i.e. an increase of

type I error. However, recently there is increasing criticism on the

use of, for instance, the ‘‘Bonferroni correction’’ ranging from total

refusal [79] to the suggestion of alternative, less conservative

methods [80]. Moreover and as explained above, we believe that

our approach represents a rather conservative measure of the

consequences of plant diversity loss.

Conclusions
In the present study plant diversity was the most important

plant community trait affecting soil microorganisms and soil

fauna. This impact did not rely on the presence of key functional

groups or plant productivity, highlighting the relevance of diverse

and high-quality plant derived resource inputs for the whole soil

feed web. Moreover, plant diversity effects were not only

restricted to functional richness, underlining the importance of

plant species richness. We detected significant temporal changes

of plant community effects with the relevance of key functional

groups decreasing in time. Decomposers responded to plant

diversity after a time-lag of four to six years with heretofore

unknown long-term feedbacks to plants. In contrast to common

view, the results suggest that plant diversity essentially drives the

performance of soil biota and temporal changes in plant

community effects need to be considered in order to adequately

assess the relevance of plant community properties for ecosystem

functioning.
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