TY - JOUR
AU - Lezaic, M.
AU - Spaldin, N. A.
TI - High-temperature multiferroicity and strong magnetocrystalline anisotropy in 3d-5d double perovskites
JO - Physical review / B
VL - 83
IS - 2
SN - 1098-0121
CY - College Park, Md.
PB - APS
M1 - PreJuSER-14663
SP - 024410
PY - 2011
N1 - We thank Kris Delaney, Phivos Mavropoulos, Stefan Blugel, Frank Freimuth, and Sergey Ivanov for many valuable discussions. M. L. gratefully acknowledges the support of the Deutsche Forschungsgemeinschaft, Grant LE 2504/1-1, and the Young Investigators Group Programme of the Helmholtz Association, Contract VH-NG-409, as well as the support of the Julich Supercomputing Centre. N.S. acknowedges support from the NSF NIRT Program, Grant No. 0609377.
AB - Using density functional calculations we explore the properties of as-yet-unsynthesized 3d-5d ordered double perovskites (A(2)BB'O-6) with highly polarizable Bi3+ ions on the A site. We find that the Bi2NiReO6 and Bi2MnReO6 compounds are insulating and exhibit a robust net magnetization that persists above room temperature. When the in-plane lattice vectors of the pseudocubic unit cell are constrained to be orthogonal (for example, by coherent heteroepitaxy), the ground states are ferroelectric with large polarization and a very large uniaxial magnetocrystalline anisotropy with easy axis along the ferroelectric polarization direction. Our results suggest a route to multiferroism and electrically controlled magnetization orientation at room temperature.
KW - J (WoSType)
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:000286752300004
DO - DOI:10.1103/PhysRevB.83.024410
UR - https://juser.fz-juelich.de/record/14663
ER -