000014666 001__ 14666
000014666 005__ 20230426083024.0
000014666 0247_ $$2DOI$$a10.1103/PhysRevB.83.094113
000014666 0247_ $$2WOS$$aWOS:000288211300003
000014666 0247_ $$2Handle$$a2128/10942
000014666 037__ $$aPreJuSER-14666
000014666 041__ $$aeng
000014666 082__ $$a530
000014666 084__ $$2WoS$$aPhysics, Condensed Matter
000014666 1001_ $$0P:(DE-HGF)0$$aAkola, J.$$b0
000014666 245__ $$aPolymorphism in phase-change materials: melt-quenched and as-deposited amorphous structures in Ge_2 Sb_2 Te_5 from density functional calculations
000014666 260__ $$aCollege Park, Md.$$bAPS$$c2011
000014666 300__ $$a094113
000014666 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000014666 3367_ $$2DataCite$$aOutput Types/Journal article
000014666 3367_ $$00$$2EndNote$$aJournal Article
000014666 3367_ $$2BibTeX$$aARTICLE
000014666 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000014666 3367_ $$2DRIVER$$aarticle
000014666 440_0 $$04919$$aPhysical Review B$$v83$$x1098-0121$$y9
000014666 500__ $$3POF3_Assignment on 2016-02-29
000014666 500__ $$aThe calculations were performed on the Jugene (IBM Blue Gene/P) and Juropa (Intel Xeon 5570) computers in the FZ Julich with grants from the FZJ and the John von Neumann Institute for Computing (NIC). We thank A. Filipponi for calculating EXAFS from our partial PDF, S. Kohara, T. Matsunaga, and N. Yamada for discussions and support, and the Academy of Finland for funding.
000014666 520__ $$aThe as-deposited (AD) amorphous structure of the prototype phase change material Ge2Sb2Te5 (GST-225) has been studied by density functional calculations for a 648-atom sample generated by computer-aided deposition at 300 K. The AD sample differs from a melt-quenched (MQ) sample in essential ways: (1) Ge atoms are predominantly tetrahedrally coordinated, and (2) homopolar and Ge-Sb bonds are more common and reduce the number of ABAB squares (A = Ge, Sb; B = Te), the characteristic building blocks of the material. The first observation resolves the contradiction between measured (EXAFS) and calculated Ge-Te bond lengths, and the latter explains the very different crystallization speeds. Sb and Te have higher chemical coordination than suggested by the "8-N rule" of covalent networks (N is the number of valence electrons). The EXAFS signal calculated for AD agrees much better with experiment than that calculated for MQ.
000014666 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000014666 542__ $$2Crossref$$i2011-03-10$$uhttp://link.aps.org/licenses/aps-default-license
000014666 588__ $$aDataset connected to Web of Science
000014666 650_7 $$2WoSType$$aJ
000014666 7001_ $$0P:(DE-HGF)0$$aLarrucea, J.$$b1
000014666 7001_ $$0P:(DE-Juel1)VDB60912$$aJones, R. O.$$b2$$uFZJ
000014666 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.83.094113$$bAmerican Physical Society (APS)$$d2011-03-10$$n9$$p094113$$tPhysical Review B$$v83$$x1098-0121$$y2011
000014666 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.83.094113$$gVol. 83, p. 094113$$n9$$p094113$$q83<094113$$tPhysical review / B$$v83$$x1098-0121$$y2011
000014666 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.83.094113
000014666 8564_ $$uhttps://juser.fz-juelich.de/record/14666/files/PhysRevB.83.094113.pdf$$yOpenAccess
000014666 8564_ $$uhttps://juser.fz-juelich.de/record/14666/files/PhysRevB.83.094113.gif?subformat=icon$$xicon$$yOpenAccess
000014666 8564_ $$uhttps://juser.fz-juelich.de/record/14666/files/PhysRevB.83.094113.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000014666 8564_ $$uhttps://juser.fz-juelich.de/record/14666/files/PhysRevB.83.094113.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000014666 8564_ $$uhttps://juser.fz-juelich.de/record/14666/files/PhysRevB.83.094113.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000014666 909CO $$ooai:juser.fz-juelich.de:14666$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000014666 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000014666 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000014666 9141_ $$y2011
000014666 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000014666 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000014666 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000014666 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000014666 970__ $$aVDB:(DE-Juel1)127031
000014666 980__ $$aVDB
000014666 980__ $$aConvertedRecord
000014666 980__ $$ajournal
000014666 980__ $$aI:(DE-Juel1)PGI-1-20110106
000014666 980__ $$aUNRESTRICTED
000014666 9801_ $$aFullTexts
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0901469106
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0022-3093(99)00474-3
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JJAP.20.727
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2009
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.359779
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JJAP.38.4775
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1289811
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3212732
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat1215
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.255501
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jpcs.2007.03.041
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/19/33/335212
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2387870
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.115124
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.235201
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/20/46/465103
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.205502
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.134118
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2801626
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2157
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cm9022612
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.020201
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.195502
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3373419
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.43.1993
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.136406
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.463940
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.10385
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.081204
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/13/7/201
000014666 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.52.15122