001     14689
005     20230426083024.0
024 7 _ |a 10.1103/PhysRevB.83.121310
|2 DOI
024 7 _ |a WOS:000288595000004
|2 WOS
024 7 _ |a 2128/10941
|2 Handle
037 _ _ |a PreJuSER-14689
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-HGF)0
|a Wada, M.
|b 0
245 _ _ |a Localized edge states in two-dimensional topological insulators: Ultrathin Bi films
260 _ _ |a College Park, Md.
|b APS
|c 2011
300 _ _ |a 121310
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 4919
|a Physical Review B
|v 83
|x 1098-0121
|y 12
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a We are grateful to S. Blugel, T. Hirahara, T. Nagao, and S. Yaginuma for helpful discussions. This research was supported in part by MEXT KAKENHI (Grants No. 21000004 and No. 22540327).
520 _ _ |a We theoretically study the generic behavior of the penetration depth of the edge states in two-dimensional quantum spin Hall systems. We found that the momentum-space width of the edge-state dispersion scales with the inverse of the penetration depth. As an example of well-localized edge states, we take the Bi(111) ultrathin film. Its edge states are found to extend almost over the whole Brillouin zone. Correspondingly, the bismuth (111) 1-bilayer system is proposed to have well-localized edge states in contrast to the HgTe quantum well.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
542 _ _ |i 2011-03-21
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Murakami, S.
|b 1
700 1 _ |0 P:(DE-Juel1)130643
|a Freimuth, F.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)130545
|a Bihlmayer, G.
|b 3
|u FZJ
773 1 8 |a 10.1103/physrevb.83.121310
|b American Physical Society (APS)
|d 2011-03-21
|n 12
|p 121310
|3 journal-article
|2 Crossref
|t Physical Review B
|v 83
|y 2011
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.83.121310
|g Vol. 83, p. 121310
|0 PERI:(DE-600)2844160-6
|n 12
|q 83<121310
|p 121310
|t Physical review / B
|v 83
|y 2011
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.83.121310
856 4 _ |u https://juser.fz-juelich.de/record/14689/files/PhysRevB.83.121310.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/14689/files/PhysRevB.83.121310.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/14689/files/PhysRevB.83.121310.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/14689/files/PhysRevB.83.121310.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/14689/files/PhysRevB.83.121310.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:14689
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|g PGI
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
|z IFF-1
970 _ _ |a VDB:(DE-Juel1)127063
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IAS-1-20090406
999 C 5 |a 10.1103/PhysRevLett.95.226801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.95.146802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.106802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.106401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.045322
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.97.236805
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1133734
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1148047
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1174736
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.045428
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.77.014701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.246807
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.081102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.56.12847
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.035120
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.045302
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.52.1566
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.99.036601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.195312
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.76.053702
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.041307
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.161302
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21