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Localized edge states in two-dimensional topological insulators: Ultrathin Bi films
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We theoretically study the generic behavior of the penetration depth of the edge states in two-dimensional

quantum spin Hall systems. We found that the momentum-space width of the edge-state dispersion scales with

the inverse of the penetration depth. As an example of well-localized edge states, we take the Bi(111) ultrathin

film. Its edge states are found to extend almost over the whole Brillouin zone. Correspondingly, the bismuth

(111) 1-bilayer system is proposed to have well-localized edge states in contrast to the HgTe quantum well.
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I. INTRODUCTION

The quantum spin Hall (QSH) phase1,2 is a new state

of matter predicted theoretically, and has received a lot of

attention recently. This phase is a nonmagnetic insulator in

the bulk or film, and has gapless surface or edge states. The

edge states consist of counterpropagating states with opposite

spins. The notable feature of these edge states is that they

are topologically protected; they remain gapless even in the

presence of nonmagnetic impurities and interaction.3,4 We still

know few systems in which the QSH phase is realized. A

theoretical proposal for the QSH system on the Bi ultrathin

film was made by one of the authors.5 In addition, the

HgTe quantum well has been theoretically proposed6 and

experimentally shown to be in the two-dimensional (2D) QSH

state.7,8

The edge states are localized near the edge, but their

penetration depth ℓ into the bulk varies among the systems.

Observation and control of the edge states crucially depends on

the penetration depth, and how they are determined in various

systems is an important issue. In this Rapid Communication,

we study the behavior of the penetration depth ℓ in QSH

systems. From a simple model, we establish a simple formula

for the penetration depth ℓ. From the formula, we show that

the minimum penetration depth (which is typically reached

in the middle of the bulk gap) scales with the inverse of the

extension of the edge states in k space. Hence, if the edge states

exist in a small region in k space, ℓ is long. By generalizing

this conclusion, we expect that ℓ is of the order of the lattice

constant if the edge state extends almost over the whole

Brillouin zone (BZ). To see this, we numerically study bismuth

thin films and their edge states. Among bismuth thin films, only

two thin films are proposed to be insulating in the bulk: the

(111) single- (1-) bilayer film9 and the {012} 2-monolayer

film.10 By using tight-binding (TB) Hamiltonians obtained by

first-principles calculations, we find that (111) 1-bilayer film

is in the QSH phase and {012} 2-monolayer film is not. We

also find that the edge states in Bi (111) 1-bilayer film are well

localized near the edges, compared with the HgTe quantum

well. From these studies, we conclude that the penetration

depth ℓ corresponds to the inverse of the k-space width of

edge-state dispersion. We note that the penetration depth ℓ

was studied in Refs. 11 and 12, but for a ribbon geometry,

where it is difficult to derive an analytic formula for ℓ. In

contrast, our calculation on a semi-infinite plane enables us to

derive the analytic formula for ℓ and discuss a wide range of

systems.

II. PENETRATION DEPTH OF THE EDGE STATES

We use the Hamiltonian for the HgTe quantum well

H(kx,ky) =

(

H (k) 0

0 H ∗(−k)

)

, (1)

where H (k) = ǫkI2 + da(k)σ a . Here, I2 is a 2 × 2 unit matrix,

σa are the Pauli matrices, ǫk = C − D(k2
x + k2

y), d1 = Akx ,

d2 = Aky , and d3 = M(k) = M − B(k2
x + k2

y). The overall

energy offset C is set to zero. The eigenenergies are then

given by −Dk2 ± |d(k)|. Thus, D represents the asymmetry

between the valence and the conduction band dispersions. The

bulk gap at k = 0 is 2M . To consider the edge state on a single

edge, we deal with a system on a half-plane of y � 0. This

considerably simplifies the results, compared with the ribbon

of finite width.11 As edge states, only the solutions with eλy

(Reλ > 0) are allowed. The secular equation

[

M − E + B+
(

λ2 − k2
x

)][

− M − E − B−
(

λ2 − k2
x

)]

= A2
(

k2
x − λ2

)

, (2)

where B± = B ± D gives two allowed values for λ:

λ = λ1,2 =
√

k2
x + F ±

√

F 2 − (M2 − E2)/(B+B−), (3)

where F = A2−2(MB+ED)

2B+B−
. If we impose a boundary condition

ψ(y = 0) = 0 as in Ref. 11, we get

λ1λ2 =
BM + DE

B+B−
− k2

x, λ1 + λ2 =
DM + BE

kxB+B−
. (4)

We then obtain an exact form for the dispersion of edge states

E = (−DM ± A
√

B+B−kx)/B (5)

from Eqs. (3) and (4). The signs correspond to the two

branches of edge states with opposite spins. Because they are

related with each other by the Kramers theorem, we henceforth

consider only the plus sign in (5). Putting (5) into (4), we get

λ1λ2 = −k2
x +

2DN

B
kx +

M

B
, λ1 + λ2 = 2N, (6)
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FIG. 1. Penetration depth ℓ for the effective model with ribbon

geometry. CB (VB) represents the bulk conduction (valence) band.

The plot on the right corresponds to a more asymmetric situation,

leading to a larger ℓ at the crossing point of the edge states.

where N = A/(2
√

B+B−). These determine λ1,2. If we put

λ1 > λ2, λ−1
2 gives the physical penetration depth ℓ as

discussed in Ref. 11. At the points with λ2 = 0, the edge states

have infinite penetration depth and become bulk states. From

(6), this occurs when kx = k±
x ≡ DN

B
(1 ±

√

1+ BM

D2N2 ). It can be

checked that the states at kx = k±
x are located at the band edge

of the projection of the bulk band and, at these points, the

edge dispersion (5) is tangential to the bulk band projection.

We can rewrite as λ1λ2 = −(kx − k+
x )(kx − k−

x ). Therefore,

λ2(= ℓ−1) is expressed as

ℓ−1 = N −
√

N2 + (kx − k+
x )(kx − k−

x ) . (7)

Hence, the behavior of ℓ−1 is as shown in Fig. 1. It

vanishes at the points P± (kx = k±
x ), where the edge states

are absorbed into the bulk band, and ℓ is minimum when

kx = (k+
x + k−

x )/2. The minimum value ℓmin is given by ℓ−1
min =

N −
√

N2 − (k+
x − k−

x )2/4. As a function of N , the minimum

value of ℓmin is 2/(k+
x − k−

x ) at N = (k+
x − k−

x )/2. This means

that the minimum ℓmin of the system is roughly given by the

inverse of the k-space extension of the edge-state dispersion.

From Fig. 1, it can be seen that the penetration depth ℓ becomes

short when the considered edge state is far from the points P±.

The inverse of the penetration depth ℓ−1 corresponds to an

imaginary part of the wave number perpendicular to the edge

direction and it therefore behaves similarly to the (real) wave

number. Hence, ℓ−1 is approximately given by the k-space

distance of wave numbers from the points P±.

In the HgTe quantum wells, the 2D quantum spin Hall states

are confirmed by transport measurements.7,8 The penetration

depth of the edge states in these systems has been calculated

to be relatively long, ℓ ∼ 50 nm.11 In our theory, by plugging

the parameters into our results, we get ℓ = 56 nm at kx = 0,

in agreement with Ref. 11. The coefficient D gives rise to an

asymmetry between the conduction and the valence bands,

and the edge state is also asymmetric: k+
x �= −k−

x , k+
x =

0.62 nm−1, k−
x = −0.024 nm−1. Thus, the penetration depth ℓ

is shortest not at kx = 0 but at kx = (k+
x + k−

x )/2 = 0.30 nm−1

with ℓmin ∼ 6.2 nm. In our interpretation, the relatively long ℓ

of the edge states in the HgTe quantum well comes from the

fact that the edge states are localized within a very narrow

region in k space. This penetration depth determines the

minimal width of the system required for observation of edge

states.

We note that the present solution for the semi-infinite plane

also gives physical properties for the states on the ribbon

discussed in Ref. 11. When the ribbon is wider than ℓ, the

hybridization between the two edge states at the opposite

edges can be treated within first-order perturbation. This

hybridization induces the gap, which is an exponentially

decreasing function of the ribbon width. The case with a very

narrow ribbon is beyond the scope of this paper because it is

far from the topological insulator.

III. Bi(111) ULTRATHIN FILM

By extending our theory to generic types of edge states, we

can expect that the inverse of the penetration depth ℓ−1 well

scales with the k-space distance from the absorption point P±
into the bulk band. Therefore, if the edge states extend over

the Brillouin zone, the penetration depth of the edge states is

as short as a few lattice constants. We will theoretically show

that Bi(111) ultrathin film is a QSH system having edge states

with such a short penetration depth.

For the calculation, we use a TB model constructed from

maximally localized Wannier orbitals13 obtained from first-

principles calculations.14 The Fermi energy lies in the six

p-like states, comprising three conduction bands and three

valence bands. Therefore, in constructing the Wannier orbitals,

we only retain these six bands. From these Wannier orbitals,

including the lattice relaxation effects of the ultrathin films,

we construct TB models keeping up to third-neighbor hopping

amplitudes.

Figures 2(a)–2(c) show the unit cell and lattice vectors,

reciprocal vectors, and the time-reversal-invariant momenta

(TRIM) and the energy band of Bi(111) 1-bilayer, respec-
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FIG. 2. (Color online) (a) Unit cell and lattice vectors and

(b) TRIMs of Bi(111) ultrathin film. The TRIMs consist of the Ŵ

point and the three M points. (c) Bulk energy bands and the parity at

the TRIMs for a Bi(111) 1-bilayer. (d) and (e): Energy bands of the

Bi(111) zigzag- and armchair-edge ribbons, respectively, with a width

of 20 unit cells, calculated from the TB model. (f) Energy bands of a

eight-unit-cell-wide Bi(111) zigzag-edge ribbon from first-principles

calculations. The size of the symbols corresponds to the weight of

the states in the edge atoms.
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tively. Since this system is inversion symmetric, all states in

Fig. 2(c) are doubly degenerate. This system is proposed to

be a nonmagnetic insulator with a bulk gap of 0.2 eV.9 We

will calculate the Z2 topological number ν. For inversion-

symmetric systems, (−1)ν is equal to the product of all the

parity eigenvalues of the Kramers pairs of eigenstates at all

the TRIMs below the Fermi energy.15 The parity eigenvalues

at the TRIMs are given in Fig. 2(c) and yield ν = 1. We note

that the first-principles calculation (without a TB model) also

gives ν = 1, meaning that the (111) 1-bilayer bismuth film is

in the QSH phase, in agreement with Ref. 5 based on a simple

truncation of the three-dimensional TB model.16

If we neglect the out-of-plane coordinate, the (111)

1-bilayer film has a honeycomb structure. Therefore, as in

graphene, we refer to the two types of simple edge shapes

as zigzag and armchair edges. Figures 2(d) and 2(e) show

the energy bands of zigzag- and armchair-edge ribbons of

the Bi(111) 1-bilayer. All the states are doubly degenerate,

consisting of two states with opposite spins, localized on

the opposite edges. In both figures, the number of Kramers

pairs of edge states per one edge is odd, confirming that the

Bi(111) 1-bilayer is a QSH system. We checked that, for the

zigzag-edge ribbon, our result from the TB model [Fig. 2(d)]

and that from a first-principles calculation [Fig. 2(f)] are in

good agreement.

These edge states extend almost over the whole Brillouin

zone. It is quite different from the HgTe quantum well,

where the edge states exist only near k = 0.6 At the Fermi

energy, there are three Kramers pairs of edge states. Thus, the

conductance of the ribbon is G = 6e2/h for a clean system.

When nonmagnetic disorder is increased, some of these edge

states become gapped due to elastic scattering, while at least

one pair of edge states remains gapless, giving G = 2e2/h.

The edge states form perfectly conducting channels, similar

to those in the graphene nanoribbons.17 In graphene, perfectly

conducting channels are formed only in the absence of short-

ranged disorder; in the Bi (111) 1-bilayer nanoribbon, the

perfectly conducting channel exists irrespective of the nature

of nonmagnetic disorder, and it gives a universal behavior

realizable in experiments.

IV. Bi{012} ULTRATHIN FILM

For inversion-asymmetric systems such as Bi {012}
2-monolayer film, the calculation of ν is complicated because

the phases of the Bloch wave functions in the entire BZ are

involved.1,18 The phase of the wave function is a gauge degree

of freedom and can be chosen arbitrary for each k, which often

causes instability in numerical calculations. Hence, we adopt

a gauge-invariant discretization method proposed in Ref. 19.

It is a merit of the method that we do not need to determine the

phase of the wave function smoothly in k space. The mesh size

δk1δk2 should be fine enough to satisfy |F (k)|δk1δk2 < π at

any mesh, where F (k) is the Berry curvature, and δk1,δk2 are

the width and height of a mesh, respectively.19 This quantity

is largest when k is at the direct gap k = kg, and the critical

size is approximated by the k-space nominal size of the band

extremum at k = kg. From the band structure of Bi{012}
2-monolayer, the critical mesh number nc

B is estimated

to be ∼100. For various mesh numbers exceeding nc
B , we
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FIG. 3. (Color online) Energy bands of Bi{012}: (a) zigzag- and

(b) armchair-edge ribbons with a width of 20 unit cells. U (L) means

that the state is localized on the upper (lower) edge. The crystal

structures near the upper edge are shown in the right panels with 1,

2, 3, and 4 representing the lattice sites. We note that these four sites

do not lie on the same plane. The shaded regions are the bulk energy

bands.

get ν = 0. Therefore, the Bi{012} 2-monolayer is an ordinary

insulator.

The edge states of Bi{012} 2-monolayer ribbons for two

types of edges are shown in Fig. 3. These two edge shapes

can be called zigzag and armchair edges, although the lattice

structure is different from graphene. The number of Kramers

pairs of edge states on the Fermi energy is even at each edge,

and this is in agreement with our result that ν = 0. The edge

states of the armchair-edge ribbon are almost degenerate due

to mirror symmetry, while those of the zigzag-edge ribbon

are not. The small energy splitting in the edge states of the

armchair-edge ribbon is due to hybridization of the edge states

at the opposite edges. Nevertheless, for a ribbon wider than ℓ,

the energy splitting is exponentially small.

V. PENETRATION DEPTH OF THE EDGE STATES

Our calculation result of the penetration depth ℓ of the edge

states of the zigzag-edged Bi(111) 1-bilayer ribbon is shown in

Fig. 4(a). The penetration depths ℓ are typically several lattice

constants. Hence, for transport experiments, the sample width

has to be larger than a few lattice constants. These results

on Bi(111) film agree with our theory on ℓ. According to

our theory, ℓ becomes short when the edge states are distant

from the points P± where the edge states merge into the bulk

[circles in Figs. 4(b) and 4(c)]. Hence, ℓ is longer for the states

at EF in Fig. 4(b) and shorter in Fig. 4(c). This information

is relevant for transport that is governed by the states at the

Fermi level. In Bi(111), the edge state travels almost over the

whole BZ. Therefore, we estimate ℓ ∼ (size of the BZ)−1 ∼
(lattice spacing), in agreement with the results in Fig. 4(a).

Bi(111) 1-bilayer film can not be described by an effective

model near k = 0 such as (1). The effective model (1) is

derived when the QSH system is described as a band inversion

between two doubly degenerate bands, such as the HgTe
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FIG. 4. (Color online) (a) Penetration depth of the edge states on

the zigzag edge of the Bi(111). (b), (c) Examples of the edge states

in the 2D QSH systems.

quantum well. In bismuth ultrathin films, the involved bands

are px , py , pz orbitals, and the valence and conduction bands

have different mixing coefficients for these orbitals. Therefore,

it is not a mere band inversion, which is the reason why the

case [Fig. 4(c)] is realized in bismuth films. We note that

Bi2Te3 and Bi2Se3 ultrathin films also have edge states similar

to Fig. 4(c).20 Although the penetration depth is not discussed

in Ref. 20, it might be interesting to check whether our theory

holds also in these films. We note that our theory assumes

isotropy between the direction along the edge (surface) and

that perpendicular to it. For layered materials such as Bi2Se3

and Bi2Te3, the penetration depth perpendicular to the layer

can not be predicted from the surface-state dispersion in the

layer because of the anisotropy.

These short penetration depths of edge states in the Bi (111)

1-bilayer film are ideal for observation by scanning tunneling

microscopy and scanning tunneling spectroscopy and control

of the edge states. Furthermore, it is also favorable for edge

thermoelectric transport.21 To utilize the perfectly conducting

channels of edge states for thermoelectric transport, short

penetration depth is an important factor, because longer

penetration depth mixes the states at different edges for narrow

ribbons and destroys the coherent edge transport.

VI. CONCLUSION

We derived a general and simple formula (7) for the

penetration depth of the edge states in two-dimensional

quantum spin Hall systems. We found that momentum-space

distance between the edge states and the absorption point of

the edge dispersion into the bulk band roughly gives the inverse

of the penetration depth. As an example, we calculated the

penetration depth of the edge states of Bi(111) 1-bilayer film,

which we propose to be a QSH insulator. The penetration

depth of the edge states in Bi(111) 1-bilayer film is in good

agreement with our theory.
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